一种超低畸变的双远心光学系统技术方案

技术编号:22802739 阅读:23 留言:0更新日期:2019-12-11 12:31
本实用新型专利技术公开了一种超低畸变的双远心光学系统,包括沿光线入射方向自前向后依次设置的前透镜组、光阑和后透镜组;所述前透镜组包括第一透镜、第二透镜和第三透镜;所述后透镜组包括第四透镜和第五透镜;所述第一透镜为光焦度为正的平凸透镜或双凸透镜,所述第二透镜和第四透镜为光焦度为正的双凸透镜,所述第三透镜为光焦度为负的双凹透镜,所述第五透镜为光焦度为正的弯月形透镜;所述第五透镜为厚透镜;所述第二透镜和第三透镜组成双胶合透镜。本实用新型专利技术仅采用5片常规球面透镜元件实现了物像双侧远心设计,获得近衍射极限的像质与极低畸变设计,实现物方不低于200mm的超长工作距离成像。

A dual telecentric optical system with ultra-low distortion

The utility model discloses a double telecentric optical system with ultra-low distortion, which comprises a front lens group, an aperture and a rear lens group arranged successively from front to back along the ray incidence direction; the front lens group comprises a first lens, a second lens and a third lens; the rear lens group comprises a fourth lens and a fifth lens; the first lens is a plane convex lens or a double convex lens with positive optical power Mirror, the second lens and the fourth lens are biconvex lens with positive optical power, the third lens is biconvex lens with negative optical power, the fifth lens is crescent lens with positive optical power, the fifth lens is thick lens, and the second lens and the third lens are combined into double adhesive lens. The utility model only uses 5 conventional spherical lens elements to realize the two-sided telecentric design of the object image, to obtain the image quality near the diffraction limit and the extremely low distortion design, and to realize the ultra long working distance imaging of the object side not less than 200 mm.

【技术实现步骤摘要】
一种超低畸变的双远心光学系统
本技术涉及光学系统
,更具体地说涉及一种超低畸变的双远心光学系统。
技术介绍
基于远心光学系统的工业检测技术应用于高端自动化、机器视觉等领域,推动汽车产业、半导体集成电路制造、先进材料加工、航空航天高精密组装以及家电制造等行业的技术迭代与产业升级,在实现产品性能、效能、精度以及成本控制上展现了优越性。物像双侧远心光学系统既可以消除物方空间被测物体的视觉误差,又可以消除像方探测器处于不同像面位置引起的倍率误差,获得恒定的检测倍率,实现无失真的形状及尺寸等特征检测,在工业检测领域获得了广泛的应用。当前市面上物像双侧远心光学系统存在透镜数量较多、成本较高等问题,成像质量方面存在边缘畸变及远心度较大等不足,无法解决解决了实现长工作距离与高分辨率探测成像之间的技术难题,同时在解决长工作距离与高分辨率探测成像之间的技术难题的前提无法获得低成本制造的优势。
技术实现思路
本技术提供一种超低畸变的双远心光学系统,通过较少透镜数量,实现高分辨率与极低畸变成像,有利于降低制造成本。本技术解决其技术问题的解决方案是:一种超低畸变的双远心光学系统,包括沿光线入射方向自前向后依次设置的前透镜组、光阑和后透镜组;所述前透镜组包括自前向后依次设置的第一透镜、第二透镜和第三透镜;所述后透镜组包括自前向后依次设置的第四透镜和第五透镜;所述光学系统的像面位于所述第五透镜的后端;所述第一透镜为光焦度为正的平凸透镜或双凸透镜,所述第二透镜和第四透镜为光焦度为正的双凸透镜,所述第三透镜为光焦度为负的双凹透镜,所述第五透镜为光焦度为正的弯月形透镜;所述第五透镜为厚透镜;所述第二透镜和第三透镜组成双胶合透镜。进一步,所述光学系统的像高与物高的比值为放大倍率X,所述放大倍率X满足:0.12≤|X|≤0.36。进一步,所述前透镜组的光焦度为正,所述后透镜组的光焦度为正,所述前透镜组的光焦度为所述后透镜组的光焦度为其中与的比值满足:进一步,所述光学系统的不同物点光束的主光线与光轴的夹角为θ1,到达像面光束的主光线与光轴的夹角为θ2,所述θ1和θ2满足:0°≤|θ1|≤0.15°;0°≤|θ2|≤0.25°。进一步,所述光学系统的最大视场的主光线在第一透镜上的高度值为hA1,所述最大视场的主光线在第二透镜上的高度值为hA2,则hA2与hA1的比值满足:0.10≤|hA2/hA1|≤0.25。进一步,所述第三透镜靠近光阑的光学面为第一光学面,所述第四透镜靠近光阑的光学面为第二光学面,所述光学系统的轴外视场的主光线在所述第一光学面的高度值为hz1,所述轴外视场主光线在所述第二光学面的高度值为hz2,其中hz2/hz1满足:-21.5≤hz2/hz1≤-15.5。进一步,所述光学系统的轴上视场的边缘光线在所述第一光学面的高度值为h1,所述轴上视场的边缘光线在所述第二光学面的高度值为h2,所述h2/h1满足:0.85≤|h2/h1|≤1.15。进一步,所述光学系统的总光焦度为所述第一透镜的光焦度为所述第二透镜和所述第三透镜组成的双胶合透镜光焦度为所述第四透镜的光焦度为所述第五透镜的光焦度为则满足:进一步,所述第一透镜的材质为重镧火石玻璃,所述第二透镜的材质为镧火石玻璃,所述第三透镜的材质为重火石玻璃,所述第四透镜和第五透镜的材质均为重镧火石玻璃。进一步,所述像面处设置CCD相机或CMOS相机,所述CCD相机或CMOS相机用于接收物面信号。本技术的有益效果是:本技术光学系统结构紧凑,仅采用5片常规球面透镜元件实现了物像双侧远心设计,获得近衍射极限的像质与极低畸变设计,实现物方不低于200mm的超长工作距离成像,能够满足使用环境结构受限、要求长工作距离的检测成像需求。附图说明为了更清楚地说明本技术实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本技术的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。图1是本技术光学系统的组成结构示意图;图2是本技术光学系统光学传递函数曲线图;图3是本技术光学系统的畸变图;图4是本技术光学系统的相对照度分布曲线图。具体实施方式以下将结合实施例和附图对本技术的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本技术的目的、特征和效果。显然,所描述的实施例只是本技术的一部分实施例,而不是全部实施例,基于本技术的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本技术保护的范围。另外,文中所提到的所有连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少连接辅件,来组成更优的连接结构。本技术创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。实施例1,参照图1,一种超低畸变的双远心光学系统,包括沿光线入射方向自前向后依次设置的前透镜组、光阑600和后透镜组;所述前透镜组包括自前向后依次设置的第一透镜100、第二透镜200和第三透镜300;所述后透镜组包括自前向后依次设置的第四透镜400和第五透镜500;所述光学系统的像面700位于所述第五透镜500的后端;所述第一透镜100为光焦度为正的平凸透镜或双凸透镜,所述第二透镜200和第四透镜400为光焦度为正的双凸透镜,所述第三透镜300为光焦度为负的双凹透镜,所述第五透镜500为光焦度为正的弯月形透镜;所述第五透镜500为厚透镜;所述光阑600为孔径光阑。所述第二透镜200和第三透镜300组成双胶合透镜。所述第五透镜500采用厚透镜,且弯曲形状朝向像面700,处于近乎不晕位置,有利于降低球差、彗差等像差,同时能够有效校正光学系统的场曲,获得平场设计的效果。本技术的工作原理:物面的光线以远心方式入射到前透镜组,前透镜组采用单透镜与双胶合透镜分离的结构型式,承载系统的主要光焦度和像差,双胶合透镜采用折射率相近、阿贝数相差较大的玻璃材料组合校正光学系统的色差,避免产生较大的球差、彗差等其它像差;光线经前透镜组会聚通过光阑600;光线从光阑600达到后透镜组,实现光线的进一步会聚并校正场曲及像散等像差,第五透镜500采用弯月形的厚透镜型式,即实现光线的会聚,又能够起到校正畸变及场曲的作用。最终将物面成像在像面700上,最终获得成像清晰的图像信息。作为优化,所述光学系统的像高与物高的比值为放大倍率X,所述放大倍率X满足:0.12≤|X|≤0.36。所述光学系统的物面经光学系统成像后,以缩小的方式成像在像面700。作为优化,所述前透镜组的光焦本文档来自技高网...

【技术保护点】
1.一种超低畸变的双远心光学系统,其特征在于:包括沿光线入射方向自前向后依次设置的前透镜组、光阑和后透镜组;/n所述前透镜组包括自前向后依次设置的第一透镜、第二透镜和第三透镜;/n所述后透镜组包括自前向后依次设置的第四透镜和第五透镜;所述光学系统的像面位于所述第五透镜的后端;/n所述第一透镜为光焦度为正的平凸透镜或双凸透镜,所述第二透镜和第四透镜为光焦度为正的双凸透镜,所述第三透镜为光焦度为负的双凹透镜,所述第五透镜为光焦度为正的弯月形透镜;所述第五透镜为厚透镜;/n所述第二透镜和第三透镜组成双胶合透镜。/n

【技术特征摘要】
1.一种超低畸变的双远心光学系统,其特征在于:包括沿光线入射方向自前向后依次设置的前透镜组、光阑和后透镜组;
所述前透镜组包括自前向后依次设置的第一透镜、第二透镜和第三透镜;
所述后透镜组包括自前向后依次设置的第四透镜和第五透镜;所述光学系统的像面位于所述第五透镜的后端;
所述第一透镜为光焦度为正的平凸透镜或双凸透镜,所述第二透镜和第四透镜为光焦度为正的双凸透镜,所述第三透镜为光焦度为负的双凹透镜,所述第五透镜为光焦度为正的弯月形透镜;所述第五透镜为厚透镜;
所述第二透镜和第三透镜组成双胶合透镜。


2.根据权利要求1所述的一种超低畸变的双远心光学系统,其特征在于:所述光学系统的像高与物高的比值为放大倍率X,所述放大倍率X满足:
0.12≤|X|≤0.36。


3.根据权利要求1所述的一种超低畸变的双远心光学系统,其特征在于:所述前透镜组的光焦度为正,所述后透镜组的光焦度为正,所述前透镜组的光焦度为所述后透镜组的光焦度为其中与的比值满足:





4.根据权利要求1所述的一种超低畸变的双远心光学系统,其特征在于:所述光学系统的不同物点光束的主光线与光轴的夹角为θ1,到达像面光束的主光线与光轴的夹角为θ2,所述θ1和θ2满足:
0°≤|θ1|≤0.15°;
0°≤|θ2|≤0.25°。


5.根据权利要求1所述的一种超低畸变的双远心光学系统,其特征在于:所述光学系统的最大视场的主光线在第一透镜上的高度值为hA1,所述最大视场的主光线在第二透镜上的高度值为hA2,则hA2与hA1的...

【专利技术属性】
技术研发人员:伍雁雄谭海曙
申请(专利权)人:佛山科学技术学院
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1