相位差与寂灭期可控的多通道异频声子激发装置制造方法及图纸

技术编号:22622977 阅读:21 留言:0更新日期:2019-11-26 11:25
本实用新型专利技术公开了一种相位差与寂灭期可控的多通道异频声子激发装置,包括微处理器、无线模块、单片机、一级驱动电路、较低电压电源、二级驱动电路、较高电压电源、一级激发端、二级激发端。微处理器通过无线模块接收到控制命令后,控制单片机发送具有相位差的多通路信号到一级驱动电路;一级驱动电路把较低电压电源输送来的高于微处理器输出电压的低电压调制成与各通道控制信号同频率的电压信号并输送到一级激发端的压电陶瓷进行各通道的声子激发。同时信号也传输至二级驱动电路,导通其自身的绝缘栅双极型晶体管,将较高电压电源输送来的电压调制成与各通道控制信号同频率的电压信号,并输送到二级激发端的压电陶瓷进行各通道的声子激发。

A multichannel heterofrequency phonon excitation device with controllable phase difference and extinction period

The utility model discloses a multi-channel different frequency phonon excitation device with controllable phase difference and extinction period, which comprises a microprocessor, a wireless module, a single-chip microcomputer, a primary driving circuit, a lower voltage power supply, a secondary driving circuit, a higher voltage power supply, a primary excitation terminal and a secondary excitation terminal. After the microprocessor receives the control command through the wireless module, it controls the MCU to send the multi-channel signal with phase difference to the primary drive circuit; the primary drive circuit modulates the low voltage which is higher than the output voltage of the microprocessor from the lower voltage power supply into the voltage signal with the same frequency as the control signal of each channel and transmits it to the piezoelectric ceramics at the primary excitation end for the sound of each channel Sub excitation. At the same time, the signal is also transmitted to the secondary drive circuit, which turns on its own insulated gate bipolar transistor, modulates the voltage from the higher voltage power supply into a voltage signal with the same frequency as the control signal of each channel, and transmits it to the piezoelectric ceramics at the secondary excitation end for acoustic excitation of each channel.

【技术实现步骤摘要】
相位差与寂灭期可控的多通道异频声子激发装置
本技术涉及声子激发控制装置领域,具体涉及一种多通道、各通道信号频率可相异可控、信号之间相位差与信号寂灭期也都可控的声子激发装置。
技术介绍
近几十年来,拓扑学与物理的结合是物理学发展的一个新领域,它不仅活跃在量子场理论以及高能物理中,更广泛地存在于凝聚态物理体系中,其中就包括声子的霍尔效应。声子是晶格振动的元激发,是固体中热输运的主要载体。许多重要的实际应用,例如集成电路散热、热障涂层、热电器件、热二极管、热三极管等都需要有效地控制声子输运。新型拓扑量子物态的发现,如量子霍尔效应、量子反常霍尔效应、量子自旋霍尔效应、拓扑绝缘体、拓扑半金属等,从根本上改变了人们对电子态的认识。由于声子作为一种中性的准粒子不能像电子一样可以通过洛伦兹力直接和磁场耦合,因此在顺磁介质样品中发现声子霍尔效应现象时,在有热流通过的样品薄膜的垂直方向上施加磁场时可以观察到横向热流,由于电子对热流贡献可以忽略,所以这种现象称之为声子霍尔效应。研究表明,可以在结构中加入旋转的气流或利用陀螺惯性效应来打破时间反演对称实现电子量子霍尔效应的声子模拟,如参考文:FleuryR,SounasD,SieckC,HabermanM,AluA.SoundIsolationandGiantLinearNonreciprocityinaCompactAcousticCirculator.Science.2014;343(6170):516-9.中介绍,此方案虽然是可行的,但是难度大,在结构中加入高频旋转气流需要非常精密的仪器实施精准的操控;还有一种方式是在波源中加入相位差,通过调节相位关系,可以产生自旋的弹性波,参考文献:LongY,RenJ,ChenH.Intrinsicspinofelasticwaves.PNatlAcadSciUSA.2018;115(40):9951-5介绍了此种方案的可行性,于此同时此方案成本相对较低,实施的成功率较高。声子霍尔效应的发现虽然给声子输运与控制提供了新的方法,但至今没有更多的实验研究声子霍尔效应。实验设备不足是其中的一个关键限制因素。研究人员一般使用压电陶瓷将电信号转化为超声信号,从而进行对声子的研究。同时,为了实现相位的调节,研究人员大多采用延迟信号发生器作为信号源。但是目前市面上能够找到的延迟信号发生器,如DG645、BNC数字延迟脉冲发生器等,不仅很难实现在同一周期内的具有相位差的多路信号的激发,而且其输出电压低、价格高昂,无法满足声子霍尔效应的科学研究以及相关实验的需求。文献1:中国技术CN204258774U公开了一种适用于延迟信号发生器的输出电路,其通过双向电平转换芯片将从FPGA芯片输出的TO同步脉冲信号和TX回波脉冲信号同步从3.3V提升至5V;但是5V的电压跟本无法满足声子研究的需求,同时也无法满足多通道以及相位差的需求。文献2:中国技术CN204425320U公开了一种复频超声波电源,其提供一种能够同时输出两路超声波信号,并且两路超声波的频率、功率和相位差均可控制和调整。但是其只有两路超声信号输出不足以研究声子霍尔效应;同时其工作中还需要驱动复频换能器、频率跟踪单元根据信号发生及功率放大单元的输出对复频换能器进行扫频和锁相,并将扫频和锁相过程中的信号反馈给所述控制单元,控制方法复杂。文献3:中国技术CN201113942Y公开了一种脉冲延迟信号发生器,其通过基准脉冲发生电路和可预置数字延迟电路共用的计数时钟电路,输出基准脉冲信号与模拟延迟信号。首先模拟延迟的效果是无法达到数字延迟水平的,会有较大的白噪声等干扰;其次,其信号是通过单片机直接输出的信号,其电压不可能达到例如100V水平,但是大于100V的电压在研究声子学中是经常用到的。实现弹性波自旋和声子霍尔效应等的实验研究,需要设备不仅拥有更多的输出通道、可调控的工作频率,而且需要可控的相位差时间,以及较高的输出信号电压,同时最好具有成本低、体积小的优点。
技术实现思路
本技术的目的在于提供设一种一种多通道、各通道信号频率可相异可控、信号之间相位差与信号寂灭期也都可控的声子激发装置。实现本技术目的技术解决方案为:一种相位差与寂灭期可控的多通道异频声子激发装置,包括主控单元与驱控单元。其中主控单元包括微处理器、无线模块、单片机;驱控单元包括一级驱动电路、较低电压电源、二级驱动电路、较高电压电源、一级激发端、二级激发端。微处理器通过单片机上的无线模块接收到操作员通过移动端发送的各通道信号的激发频率参数命令、各通道之间的相位差时间参数命令以及信号组寂灭期时间参数命令,然后控制单片机发送具有相位差的多通路数字信号到一级驱动电路;同时操作员也可以通过单片机烧录程序代码到微处理器的方式设定各通道信号的频率、各通道之间的相位差时间参数以及信号组寂灭期时间参数,然后系统控制单片机发送具有相位差的多通路数字信号到一级驱动电路。微处理器与单片机本身的可输出的电压一般小于等于5V,而激发声子的激发电压信号通常在12V至1500V之间。所以,系统分为处理12V-48V较低电压的一级驱动电路与处理48V-1500V较高电压的二级驱动该电路。一级驱动电路把较低电压电源输送来的电压信号调制成与各通道控制信号同频率的电压信号并输送到一级激发端的压电陶瓷进行各通道的声子激发。电源功率恒定的情况下,如果安置信号放大器以放大激发电压,那么激发电流就会减小,有可能会影响到声子激发的效果,同时安置放大器会增加驱动电路的反应时间。所以,一级驱动电路可以不安置常见的信号放大器,直接通过数字控制信号调控,把较低电压电源的电压信号调制成各通道控制信号的频率,按照相位差控制各自的延迟时间,发送到一级激发端进行声子激发,实现较低电压激发下具有相位差的多通道激发信号,同时可以通过控制信号中命令参数设置实现多通道信号组的信号寂灭期,即同一组具有相位差的多通道信号激发完毕后,整体寂灭延迟一个寂灭期后,重新启动激发信号,依次寂灭、激发、循环交替。于此同时,一级驱动电路把较低电压电源的电压信号调制成各通道控制信号的频率,按照相位差控制各自的延迟时间,同步发送传输至二级驱动电路。二级驱动电路连接48V-1500V的较高电压电源。二级驱动电路中的绝缘栅双极型晶体管IGBT,开启其通路一般需要在其栅极G和发射极E之间施加大于12V的驱动正电压,而一级驱动电路输送来的电压满足了此条件。二级驱动电路通过IGBT把较高电压电源输送来的电压调制成与各通道控制信号同频率同相位差的电压信号,并输送到二级激发端的压电陶瓷进行各通道的声子激发,实现实现较高电压激发下具有相位差的多通道激发信号,同时可以通过控制信号中命令参数设置实现多通道信号组的信号寂灭期,即同一组具有相位差的多通道信号激发完毕后,整体寂灭延迟一个寂灭期后,重新启动激发信号,依次寂灭、激发、循环交替。本技术克服了传统信号延迟的信号发生器输出通道少,相位差控制困难,容易出现白噪声以及价格昂贵的缺点。本技术可根据单片机的硬件结构输本文档来自技高网
...

【技术保护点】
1.相位差与寂灭期可控的多通道异频声子激发装置,其特征在于,包括主控单元与驱控单元;主控单元包括微处理器、无线模块、单片机;驱控单元包括一级驱动电路、较低电压电源、二级驱动电路、较高电压电源、一级激发端、二级激发端;主控单元接收到参数命令后,根据命令中信号频率、信号相位差以及寂灭期参数命令,发送多通道信号到驱控单元。/n

【技术特征摘要】
1.相位差与寂灭期可控的多通道异频声子激发装置,其特征在于,包括主控单元与驱控单元;主控单元包括微处理器、无线模块、单片机;驱控单元包括一级驱动电路、较低电压电源、二级驱动电路、较高电压电源、一级激发端、二级激发端;主控单元接收到参数命令后,根据命令中信号频率、信号相位差以及寂灭期参数命令,发送多通道信号到驱控单元。


2.根据权利要求1所述的相位差与寂灭期可控的多通道异频声子激发装置,其特征在于,包括:单片机与一级驱动电路相连,发送控制信号到一级驱动电路;一级驱动电路与较低电压电源、一级激发器相连,把较低电压调制成同参数的电压信号,发送到一级激发端与二级驱动电路。


3.根据权利要求1所述的相位差与寂灭期可控的多通道异频声子激发装置,其特征在于,一级与二级驱动电路相连,发送控制信号到二级驱动电...

【专利技术属性】
技术研发人员:王泽峰赵金峰桂琪珍袁伟桃
申请(专利权)人:南京拓步智能科技有限公司
类型:新型
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利