【技术实现步骤摘要】
裂隙岩体单元结构的等效导热系数测试系统
本技术涉及一种测试装置与计算方法,具体是一种裂隙岩体单元结构的等效导热系数测试系统与计算方法。
技术介绍
随着我国东部及部分中部矿井进入深地开采,面临高渗透水压力、高地应力、高地温的特殊开采条件,矿井热害越来越严重。造成深部岩体高温的原因不仅是因为地温梯度的升高,由于受采动影响,如图1所示,高地应力导致岩体裂隙发育,高渗透水压力使得矿井水沿裂隙网络运移,这个过程中伴随着热的迁移。裂隙岩体的传热模式主要包括,①基质岩块的热传导;②裂隙中流体的热传导和热对流,因为裂隙中流体热对流涉及到水-岩界面对流换热系数的确定问题,对流换热系数h是一个动态值,和流速v、隙宽b,水岩界面几何特征、水岩的热物理性质等有关,是个复杂的变量,目前对h的取值没有合适的经验公式或确定的理论,导致裂隙岩体渗流-传热问题研究起来较复杂。为使问题简化,可以考虑从裂隙岩体中提取含单裂隙的基本岩石单元,研究该含裂隙单元的等效导热系数,然而目前尚无较好的能够准确研究等效导热系数的办法,无法为裂隙岩体水-热迁移的研究提供理论基础。
技术实现思路
针对上述现有技术存在的问题 ...
【技术保护点】
1.一种裂隙岩体单元结构的等效导热系数测试系统,其特征在于,包括加热保温箱体(9),所述加热保温箱体(9)包括四块侧板围成的箱壁和从上方和下方封住箱壁的水平保温板(9‑3),所述四块侧板包括相对设置的一组加热板(9‑1)和相对设置的一组竖直保温板(9‑2),每块竖直保温板(9‑2)上从一侧表面向另一侧表面设有贯通孔,贯通孔中装有可转动通水管(9‑2‑1);每块加热板(9‑1)上皆设有一加热电极(9‑1‑1),所述加热电极(9‑1‑1)通过一温度控制仪(15)连接至稳压电源(14),所述加热板(9‑1)朝向加热保温箱体(9)的内侧表面设有温度传感器(9‑1‑2);加热保温箱体 ...
【技术特征摘要】
1.一种裂隙岩体单元结构的等效导热系数测试系统,其特征在于,包括加热保温箱体(9),所述加热保温箱体(9)包括四块侧板围成的箱壁和从上方和下方封住箱壁的水平保温板(9-3),所述四块侧板包括相对设置的一组加热板(9-1)和相对设置的一组竖直保温板(9-2),每块竖直保温板(9-2)上从一侧表面向另一侧表面设有贯通孔,贯通孔中装有可转动通水管(9-2-1);每块加热板(9-1)上皆设有一加热电极(9-1-1),所述加热电极(9-1-1)通过一温度控制仪(15)连接至稳压电源(14),所述加热板(9-1)朝向加热保温箱体(9)的内侧表面设有温度传感器(9-1-2);加热保温箱体(9)中设有单裂隙渗流板(10),所述单裂隙渗流板(10)包括隔热环体(10-1)和从两侧覆盖住隔热环体(10-1)的高导热盖板(10-2),所述隔热环体(10-1)由两两相对设置的一对弧形板Ⅰ(10-1-1)和一对弧形板Ⅱ(10-1-2)围成,每块弧形板Ⅰ(10-1-1)从外圈端面向内圈端面贯通设有渗流通孔(10-1-1a);所述两块弧形板Ⅰ(10-1-1)中的渗流通孔(10-1-1a)露出弧形板Ⅰ(10-1-1)外圈端面的一端分别与两块竖直保温板(9-2)上可转动通水管(9-2-1)伸入加热保温箱体(9)中的内端固定连通,且其中一个竖直保温板(9-2)上的可转动通水管(9-2-1)露出加热保温箱体(9)的外端通过注入管(17)与一矿井水注入装置连通,另一个竖直保温板(9-2)上的可转动通水管(9-2-1)露出加热保温箱体(9)的外端通过一出水管连通至外部,出水管上设有背压阀(13);所述两块竖直保温板(9-2)上的可转动通水管(9-2-1)的外端分别设有一压力传感器(12);所述温度传感器(9-1-2)、压力传感器(12)分别连接至一数据采集器。2.根据权利要求1所述的裂隙岩体单元结构的等效导热系数测试系统,其特征在于,所述矿井水注入装置包括液体恒压恒流高精度注入系统和双活塞容器驱动装置,所述液体恒压恒流高精度注入系统包括恒压恒流双缸泵(1)和连接在恒压恒流双缸泵(1)入口上的冷水容器(2);所述双活塞容器驱动装置包括并排设在一保护箱体(8)中的第一双向活塞缸(61)和第二双向活塞缸(62),所述第一双向活塞缸(61)的一端开口通过输水管线分别连接至一第一转换阀(V1)、一第二转换阀(V2)的一端,第二转换阀(V2)的另一端连通至大气,所述第二双向活塞缸(62)的一端开口通过输水管线分别连接至一第三转换阀(V3)、一第四转换阀(V4)的一端,第三转换阀(V3)的另一端连通至大气,第一转换...
【专利技术属性】
技术研发人员:万志军,王骏辉,程敬义,张源,熊路长,丁根荣,
申请(专利权)人:中国矿业大学,
类型:新型
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。