当前位置: 首页 > 专利查询>南开大学专利>正文

利用超表面相位调制的高对比度望远镜制造技术

技术编号:22164648 阅读:48 留言:0更新日期:2019-09-21 09:38
一种利用超表面相位调制的高对比度望远镜。将超表面作为位相掩模板加入到天文望远镜系统中,其中超表面由沿径向排列的纳米柱单元以及衬底组成,每个纳米柱的旋转角度由径向旋转角以及轴向旋转角两部分构成,利用几何相位原理对入射在衬底上的圆偏光实现相位调制产生能量集中在光束外围的涡旋光束,并通过在成像透镜前的里奥光阑遮挡作用实现消除该部分能量的目的,同时该超表面位相掩模板则不会对斜入射的光产生影响。从而能够在消除正入射的恒星光的同时很好地对斜入射的行星光进行成像,实现高对比度的望远镜系统。本发明专利技术在行星的观测和分辨、空间目标观测、望远镜的小型化和紧凑化以及超表面的应用等方面具有重要价值。

High Contrast Telescope Using Supersurface Phase Modulation

【技术实现步骤摘要】
利用超表面相位调制的高对比度望远镜
本专利技术属于微纳米光学和天文观测领域,涉及微光学器件、望远镜系统,特别是一种利用超表面相位调制的高对比度望远镜。
技术介绍
传统的望远镜无法对系外行星和空间中能量远低于恒星的目标进行直接探测成像,最主要的原因在于其光强要远远小于恒星光的光强。在望远镜成像中,行星光和空间目标的聚焦光斑往往会落于恒星光的聚焦光斑旁瓣中而导致行星光不能被直接观测到。因此如何消除中心高亮度的恒星,并对旁边较暗的目标进行成像,即获得高对比度的成像图,这成为直接观测空见目标的最大难题。目前用于空见目标观测的望远镜多用传统的螺旋位相板、四分位相板等作为掩模,而利用超表面作为位相掩模板具有体积小、重量轻以及利于集成化的优点。
技术实现思路
本专利技术目的是为了消除中心高亮度的恒星,并对旁边较暗的空间目标进行成像,即获得高对比度的成像图。因此将由不同旋转角度α的纳米柱及衬底构成的超表面作为位相掩模板加入到望远镜系统中,改变正入射的恒星光的能量分布,实现高对比度的望远镜系统。本专利技术技术方案利用超表面相位调制的高对比度望远镜系统,由在物镜的焦面上放置合适透过率函数的超表面相位调制器件,通过改变正入射光位相的空间分布,并结合透镜系统的傅里叶变换性质,达到对正入射光能量转移的目的。因此,作为相位掩模板的超表面上各个单元的纳米柱应满足的相位需求为:其中:λ是入射光波长,f是预设计的焦距,x、y分别为每个纳米柱在直角坐标系下位置的横纵坐标,m是涡旋光的拓扑荷。而每个点需求的相位通过控制纳米柱旋转的角度,利用几何相位调制的原理实现。因此正入射恒星光的能量在受到超表面的相位调制后能量分布在外围,并被成像系统前的里奥光阑所挡住,完成高对比度成像的目的。本专利技术的优点和积极效果:本专利技术提供的利用超表面相位调制的高对比度望远镜,利用超表面作为相位掩模板实现了对正入射的恒星光的相位调制,并通过精确控制目镜前的里奥光阑的孔径完成削弱该部分能量的目的,于此同时能对斜入射的能量远不及恒星光的空间目标成像。本专利技术提供的望远镜系统在高对比度,结构简单,成像质量高,超高的角分辨率的基础上,更拥有小型化和紧凑化的优点,更利于携带至外太空进行天文观测。附图说明图1是利用超表面相位调制的高对比度望远镜的工作原理示意图。图2是由介质纳米柱和基底构成的作为相位掩模板的超表面示意图。其中:图(a)是超表面相位掩模板的俯视图。图(b)是超表面相位掩模板的基本单元主视图。图(c)是超表面相位掩模板的基本单元俯视图。图3是正入射经过望远镜系统的物镜和作为相位掩模板的超表面后的光场分布示意图,其中图3(a)是x=0时,yz平面的光场强度分布图。图3(b)y=0时,xz平面的光场强度分布示意图。图3(c)是z=8.95μm时,xy平面的光场强度分布示意图。图4是正入射和斜入射光进入一般望远镜系统和利用超表面相位调制的望远镜系统的成像示意图。其中图4(a)是一般望远镜对正入射的恒星光成像的光场示意图。图4(b)是一般望远镜对入射角度为5°的行星光成像的光场示意图。图4(c)是利用超表面相位调制的望远镜系统对正入射的恒星光成像的光场示意图。图4(d)是利用超表面相位调制的望远镜系统对入射角度为5°的行星光成像的光场示意图。具体实施方式实施例1如图1所示,利用超表面实现相位调制的高对比度望远镜系统,由控制入射光的孔径光阑、焦距为f物镜L1、超表面位相调制器件、傅里叶变换透镜L2、用于消除正入射恒星光的里奥光阑、成像透镜L3以及CCD相机构成。根据标量衍射理论和透镜的傅里叶变换性质,用于相位调制的掩模板的相关系数应满足:其中t(θ)为位相掩模板的的透过率函数。Cn起到调节各阶能量所占比例的作用,而从Cn的表达式中可以看出它只与位相板的透过率函数有关,因此通过合适的位相板透过率函数,使C0和C2q+1都为0,那么在里奥光阑前将只剩下偶数阶汉克尔变换的复振幅分布,这部分的能量被里奥光阑阻挡,从而达到“人为日食”的作用。而利用超表面作为相位掩模板的优点在于其可以对正入射光实现任意的相位调制和波前变换,可以很容易的满足其它位相板难以满足的对于透过率函数的要求。超表面位相掩模板由衬底和沿径向排列不同旋转角度的纳米柱单元构成,为了满足对于透过率函数的要求,每一个纳米柱单元需要提供的相位突变为其中:λ为入射光的波长,x、y分别为每个纳米柱单元在直角坐标系下的横纵坐标,f为预设的焦距,m为整形成的涡旋光束的拓扑荷。而每个纳米柱实现的相位突变由几何相位原理精确调制。本专利技术中涉及到的超表面相位调制器件的制作可采用原子层沉积法加工实现。具体应用实例1利用超表面实现相位调制的高对比度望远镜的具体参数如下:系统的工作波长为532nm的圆偏光,物镜L1、傅里叶变换镜L2成像透镜L3焦距均为100mm,L1到超表面相位掩模板以及超表面相位掩模板到L2的距离均为100mm,L2与L3距离200mm。用于遮挡正入射光能量的里奥光阑半径为1.5mm。作为相位掩模板的超表面由基底二氧化硅(SiO2)和纳米柱二氧化钛(TiO2)组成,其中衬底的高度为200nm,每个纳米柱的高为290nm,宽为75nm,高为550nm,周期为400nm,旋转角度由来确定。预设的聚焦光涡旋的焦距为10μm,拓扑荷为2。图1是利用超表面相位调制的高对比度望远镜工作原理示意图,该系统能够在消除正入射的高亮度恒星光的同时对斜入射的行星光实现成像,可用于系外行星的发现与观测。图2是作为相位掩模板的超表面示意图,其中:图(a)是超表面相位掩模板的俯视图。图(b)是超表面相位掩模板的基本单元主视图。图(c)是超表面相位掩模板的基本单元俯视图。纳米柱沿径向排列,且随着半径的增大,每个圆环上的纳米柱数量呈线性增长通过从0到π旋转介质纳米柱旋转角角α,其交叉偏振光(与入射圆偏振光的旋向相反)的相位可以覆盖整个0到2π范围。每个纳米柱的位置及旋转角度α由该器件的相位分布确定。图3是经过望远镜系统的物镜和作为相位掩模板的超表面后的光场分布示意图,其中图3(a)是x=0时,yz平面的光场强度分布图。图3(b)y=0时,xz平面的光场强度分布示意图。图3(c)是z=8.95μm时,xy平面的光场强度分布示意图。通过时域有限差分的方法模拟计算得到产生的光涡旋聚焦位置为8.95μm,与设计的焦距较为吻合。图4是是正入射和斜入射光进入未加入超表面相位掩模板和利用超表面相位调制的望远镜系统的成像示意图。其中图4(a)是普通望远镜对正入射的恒星光成像的光场示意图。图4(b)是普通望远镜对入射角度为5°的行星光成像的光场示意图。图4(c)是利用超表面相位调制的望远镜系统对正入射的恒星光成像的光场示意图。图4(d)是利用超表面相位调制的望远镜系统对入射角度为5°的行星光成像的光场示意图。通过Zemax软件模拟得到在未加入超表面相位掩模板之前,像面正入射光的总功率为6.6156W,峰值辐照度为16081W/mm2;像面入射角为5°的行星光的总功率为7.7333W,峰值辐照度为629.9886W/mm2。加入超表面相位掩模板后,像面正入射光的总功率为0.7801W,峰值辐照度为363.4473W/mm2;像面入射角为5°的行星光的总功率为7.7334W,峰值辐照度本文档来自技高网...

【技术保护点】
1.一种利用超表面相位调制的高对比度望远镜,其特征在于利用超表面作为相位掩模板实现相位调制的功能。当正入射的恒星光经过系统的物镜后,在其焦面位置受到超表面的调制后形成中空的涡旋光束,能量被偏移到光束外围,再经过傅里叶变换透镜后被里奥光阑挡住。而该超表面则不会改变斜入射光的能量分布,最终在相机上实现削弱正入射光能量的高对比度成像。

【技术特征摘要】
1.一种利用超表面相位调制的高对比度望远镜,其特征在于利用超表面作为相位掩模板实现相位调制的功能。当正入射的恒星光经过系统的物镜后,在其焦面位置受到超表面的调制后形成中空的涡旋光束,能量被偏移到光束外围,再经过傅里叶变换透镜后被里奥光阑挡住。而该超表面则不会改变斜入射光的能量分布,最终在相机上实现削弱正入射光能量的高对比度成像。2.根据权利1要求所述的利用超表面相位调制的高对比度望远镜,其特征在于根据标量衍射理论和透镜的傅里叶变换性质,用于相位调制的掩模板的相关系数应满足:其中t(θ)为位相掩模板的的透过率函数,Cn起到调节各阶能量所占比例的作用,而Cn的只与位相板的透过率函数有关,因此通过合适的位相板透过率函数,使C0和C2q+1都为0,那么在里奥光阑前将只剩下偶数阶汉克尔变换的复振幅分布。3.根据权利要求1所述的利用超表面的高对比度望远镜...

【专利技术属性】
技术研发人员:匡登峰孔维超王鲲鹏
申请(专利权)人:南开大学
类型:发明
国别省市:天津,12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1