一种用于计算页岩有机质不同孔径表面吸附量的方法技术

技术编号:22078768 阅读:102 留言:0更新日期:2019-09-12 15:12
本发明专利技术公开了一种用于计算页岩有机质不同孔径表面吸附量的方法,该方法包含:(1),利用石墨构建石墨烯的层间结构建立有机质模型,将甲烷构型导入建好的有机质模型中;(2)进行吸附模拟,对分子体系进行能量最小化,通过调整原子位置变化获得初始的稳定构型;(3)计算有机质孔径中充填的甲烷分子数,优先吸附位的判断,计算全过程采用COMPASS力场,计算分子间范德华作,及甲烷与骨架的静电势能;(4)在与孔壁面平行方向上将纳米孔划分为K个单元,统计每个盒子内的原子种类和数目,计算其流体密度平均值;(5)计算Gibbs吸附量。本发明专利技术的方法对吸附相密度的计算与实际情况吻合更好,精度更高。

A Method for Calculating Surface Adsorption of Shale Organic Matter with Different Pore Diameters

【技术实现步骤摘要】
一种用于计算页岩有机质不同孔径表面吸附量的方法
本专利技术属于页岩气勘探领域,具体涉及一种用于计算页岩有机质不同孔径表面吸附量的方法。
技术介绍
国内外学者在对页岩的吸附性能进行研究时发现,在利用容量法对页岩吸附甲烷进行测试时,吸附相体积的存在将减小样品中自由气体的体积,进而对页岩吸附能力的测试结果产生影响。然而,容量法忽略了吸附相体积存在,这必将导致对于页岩吸附能力的评价存在较大偏差。针对上述问题,国内外学者试图从不同的角度校正吸附相体积对吸附气能力测试所产生的影响。然而,无论以何种方式对吸附相体积所产生的影响进行校正,终将遵循物质守恒原理,因此吸附相密度的确定是无法回避的问题,且吸附相密度的准确性将直接影响校正结果。目前,国内外学者基于不同方法对甲烷吸附相密度进行多种求解,主要可以归纳为以下3种常见的方法:方法1:理论上认为气体吸附类似于气体液化,所以可以直接选取常压沸点时液体甲烷密度作为吸附相密度,取值为0.423g/cm3;方法2:通过实验得到的Gibbs吸附量下降段线性化拟合求取吸附相密度。此法认为,Gibbs吸附量达到极大值拐点后随压力进一步增加呈线性下降趋势,说明吸附达到饱和,吸附饱和后吸附相密度和吸附相体积不在进一步增加而保持恒定。利用数据拟合线性下降段直线,直线斜率的绝对值即为吸附相体积,直线与横坐标交点值即为吸附相密度;方法3:以数学优化思想根据实测Gibbs吸附量通过最小二乘法拟合求得吸附相密度。上述三种吸附相密度求取的方法被广泛应用于校正Gibbs吸附量曲线,从而得到页岩甲烷表面吸附量,但哪一种方法得到的校正结果更加合理,更接近实际情况仍然存在争议。为了校正页岩超临界吸附曲线,使校正获得的表面吸附量更加准确合理,对于以上3种方法进行了实际应用分析:对于第1种方法,因为吸附相密度在不同样品、不同实验条件下会有较大变化,不能简单地认为吸附相的密度为一定值。并且,研究发现临界状态下甲烷吸附相的密度应处于临界密度(0.162g/cm3)与常压沸点液体甲烷密度(0.423g/cm3)之间差距较大,因此该方法的适用性较差;对于第2种方法,部分样品拟合得到的吸附相密度大于常压沸点液体甲烷密度,所以该方法并不对所有样品都适用;对于第3种方法,依然存在部分样品,拟合得到的甲烷吸附相密度大于常压沸点液体甲烷密度。这表明,该方法并不对所有样品均可靠。综上所述,以上3种常用的计算吸附相密度的方法对于页岩中甲烷吸附相密度的计算并不适用,不具有普遍性。而且,以上三种计算方法都没有考虑孔径大小对于吸附相密度的影响,不能很好的反应真实的吸附情况,这必将对客观评价页岩吸附能力产生较大影响。
技术实现思路
本专利技术的目的是提供一种用于计算页岩有机质不同孔径表面吸附量的方法,该方法解决了现有方法不能很好的反应甲烷的真实吸附情况的问题,对吸附相密度的计算与实际情况吻合更好,精度更高。为了达到上述目的,本专利技术提供了一种用于计算页岩有机质不同孔径表面吸附量的方法,其特征在于,该方法包含:(1)建立有机质模型,利用石墨构建石墨烯的层间结构,相邻层间距为0.335nm,将甲烷构型导入建好的有机质模型中;(2)进行吸附模拟,利用Smart算法对分子体系进行能量最小化,通过调整原子位置变化获得初始的稳定构型;(3)利用巨正则系统蒙特卡洛法计算有机质孔径中充填的甲烷分子数,优先吸附位的判断利用巨正则系综蒙特卡洛法,设定平衡步数和化产步数;计算全过程采用COMPASS力场,其中分子间范德华作用采用AtomBased求和方法,甲烷与骨架的静电势能采用Ewald求和方法;(4)在与孔壁面平行方向上将纳米孔划分为K个单元,导出充填流体分子后的骨架模型,获得吸附体系中各原子的坐标,统计每个盒子内的原子种类和数目,并计算甲烷吸附相密度ρa;(5)以Gibbs吸附量作为表面吸附量,为:式(2)中,Vex为平衡压力下甲烷的Gibbs吸附量;Vabs为平衡压力下甲烷表面吸附量;ρa为甲烷吸附相密度;ρg为平衡压力下气体相密度。其中,利用Smart算法对分子体系进行能量最小化,依靠解牛顿运动方程的模拟计算,对体系中不同状态分子进行样本抽取,计算分子体系的积分,并以体系积分结果为初始状态,计算模拟体系的热力学性质、以及系统的势能、各原子所受的力、加速度、经过t时间后各分子的位置及速度,通过对这些数据运用统计平均的方法计算宏观性质以及空间分布,获得初始的稳定构型。优选地,所述流体密度平均值ρa:式(1)中,i为原子种类;Mi为i原子的相对分子质量;ki为小盒子内含有的i原子数量;NA为阿伏伽德罗常数;Vj为第j个小盒子的体积。优选地,在步骤(2)中,体系的总能量由体系中分子的总动能和总势能构成,总势能通过体系中分子中各个原子的函数来表达,为:U=UVDW+Uin(2);式(2)中,U为总势能,UVDW为范德华作用,Uin为内部势能;式(3)中,uij表示各i原子和j原子之间的范德华作用;rij表示各i原子和j原子之间的距离;系统中任意一个原子i所受的力Fi为:式(4)中,为在三维空间直角坐标系内与x轴、y轴、z轴方向相同的单位向量,表示空间向量的一组基底;xi、yi、zi分别表示原子i在三维空间直角坐标系中x轴、y轴、z轴方向的坐标值;由牛顿运动定律,可得原子i所受的加速度ai为:将牛顿运动定律方程对时间积分,可得原子i经过时间t后的速度vi与位置ri为:式(8)中,为原子i的初始速度,为原子i的初始位置。优选地,在步骤(3)中,设定平衡步数和化产步数均为1×106。本专利技术的用于计算页岩有机质不同孔径表面吸附量的方法,解决了现有方法不能很好的反应甲烷的真实吸附情况的问题,具有以下优点:(1)本专利技术的方法,利用分子动力学原理,模拟了甲烷气体在页岩有机质表面的吸附情况,本专利技术方法在吸附相密度的模拟中考虑到孔径,更加合理,明显优于传统方法;(2)本专利技术的方法,在计算结果上,对吸附相密度的计算与实际情况吻合更好,精度更高,明显优于传统方法;(3)本专利技术的方法,利用分子动力学模拟从微观的角度考虑了宏观实验没有办法进行的不同孔径大小对于吸附相密度的影响;(4)本专利技术方法简单易行,准确度高,实用性较强,且有较好的推广应用价值。附图说明图1为分子动力学模拟方法流程图。图2为本专利技术方法的流程图。图3为本专利技术在某油田某井吸附气量测井评价成果图。图4为未修正模型计算结果与实验测试结果对比图。图5为本专利技术修正模型计算结果与实验测试结果对比图。具体实施方式下面将对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。实施例1一种用于计算页岩有机质不同孔径表面吸附量的方法,如图2所示,为本专利技术方法的流程图,该方法在某油田进行测试时,具体步骤如下:(1)建立模型利用石墨构建石墨烯的层间结构来代替有机质的层间结构,采用3层石墨稀片层作为有机质纳米孔的固体壁,且保证相邻两层之间平行距离为0.335nm。然后,将MaterialsStudio软件包中已经构建完成的甲烷构型导入建好的有机质模型中,进行后续的吸附模拟。(本文档来自技高网
...

【技术保护点】
1.一种用于计算页岩有机质不同孔径表面吸附量的方法,其特征在于,该方法包含:(1)建立有机质模型,利用石墨构建石墨烯的层间结构,相邻层间距为0.335nm,将甲烷构型导入建好的有机质模型中;(2)进行吸附模拟,利用Smart算法对分子体系进行能量最小化,通过调整原子位置变化获得初始的稳定构型;(3)利用巨正则系统蒙特卡洛法计算有机质孔径中充填的甲烷分子数,优先吸附位的判断利用巨正则系综蒙特卡洛法,设定平衡步数和化产步数;计算全过程采用COMPASS力场,其中分子间范德华作用采用AtomBased求和方法,甲烷与骨架的静电势能采用Ewald求和方法;(4)在与孔壁面平行方向上将纳米孔划分为K个单元,导出充填流体分子后的骨架模型,获得吸附体系中各原子的坐标,统计每个盒子内的原子种类和数目,并计算甲烷吸附相密度ρa;(5)以Gibbs吸附量作为表面吸附量,为:

【技术特征摘要】
1.一种用于计算页岩有机质不同孔径表面吸附量的方法,其特征在于,该方法包含:(1)建立有机质模型,利用石墨构建石墨烯的层间结构,相邻层间距为0.335nm,将甲烷构型导入建好的有机质模型中;(2)进行吸附模拟,利用Smart算法对分子体系进行能量最小化,通过调整原子位置变化获得初始的稳定构型;(3)利用巨正则系统蒙特卡洛法计算有机质孔径中充填的甲烷分子数,优先吸附位的判断利用巨正则系综蒙特卡洛法,设定平衡步数和化产步数;计算全过程采用COMPASS力场,其中分子间范德华作用采用AtomBased求和方法,甲烷与骨架的静电势能采用Ewald求和方法;(4)在与孔壁面平行方向上将纳米孔划分为K个单元,导出充填流体分子后的骨架模型,获得吸附体系中各原子的坐标,统计每个盒子内的原子种类和数目,并计算甲烷吸附相密度ρa;(5)以Gibbs吸附量作为表面吸附量,为:式中,Vex为平衡压力下甲烷的Gibbs吸附量;Vabs为平衡压力下甲烷表面吸附量;ρa为甲烷吸附相密度;ρg为平衡压力下气体相密度;其中,利用Smart算法对分子体系进行能量最小化,依靠解牛顿运动方程的模拟计算,对体系中不同状态分子进行样本抽取,计算分子体系的积分,并以体系积分结果为初始状态,计算模拟体系的热力学性质、以及系统的势能、各原子所受的力、加速度、经过t时间后各分子的位置及速度,通过对这些数据运用统计平均的方法计算宏观性质以及空间分布,获得...

【专利技术属性】
技术研发人员:赵军刘凯杨林程道解向薪燃何羽飞王伟明
申请(专利权)人:西南石油大学
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1