当前位置: 首页 > 专利查询>重庆大学专利>正文

一种基于球杆仪测量的机床平动轴位置相关误差辨识方法技术

技术编号:21987701 阅读:37 留言:0更新日期:2019-08-31 02:36
本发明专利技术公开了一种基于球杆仪测量的机床平动轴位置相关误差辨识方法,包括以下步骤:分别建立球杆仪的刀具球中心在XY、XZ、YZ平面运动的综合误差模型;在XY、YZ、XZ三个平面进行球杆仪测量,获得各个圆弧位置处的球杆仪杆长变化量;对X、Y、Z轴的位置相关误差进行非整指数多项式预拟合,结合各平面的综合误差模型求解非整指数多项式的各项系数,实现位置相关误差的辨识。该发明专利技术方法测量精度高,操作简便快速,成本低并且可以准确辨识出数控机床平动轴位置相关误差。

A Method for Identification of Position Correlated Errors of Machine Tool Translational Axis Based on Ball Rod Measurement

【技术实现步骤摘要】
一种基于球杆仪测量的机床平动轴位置相关误差辨识方法
本专利技术属于机床误差测量领域,涉及一种基于球杆仪测量的机床平动轴位置相关误差辨识方法。技术背景随着科学技术的进步,现代加工技术向着高速和精密化方向发展,如何提高数控机床加工精度已经成为广受关注的关键技术。目前提高数控机床精度主要有两种方法:误差防止法和误差补偿法。误差防止法虽然能减小原始误差,但依靠提高机床设计、制造和装配精度来满足机床的精度有很大的局限性,且成本很高。误差补偿法通过对误差进行补偿可以显著提高机床精度,还可以降低成本,因此被广泛应用。对数控机床误差进行补偿,首先要对机床误差进行建模、测量和辨识。常用的数控机床误差测量工具有激光干涉仪和球杆仪。用激光干涉仪测量辨识平动轴位置相关误差比较经典的方法之一为九线法,即使机床分别沿着互相垂直的三个方向上作平移运动,利用9条线上的定位误差和直线度误差来解耦平动轴的所有位置相关误差,类似的方法还有12线法。但是使用激光干涉仪进行误差测量,停机时间长,安装调试困难,需要较强的专业技能,且成本昂贵。球杆仪操作简单,且成本较低,因此被广泛应用与数控机床误差测量。现有的球杆仪测量方法在测量数控机床平动轴位置相关误差时,只能得到平动轴的综合误差,难以直接得到各轴的单项位置相关误差,因此需要对综合误差进行辨识。采用多项式对位置相关进行预拟合,通过求解多项式系数间接代替直接求解误差是一种可行的位置相关误差辨识方法,但常规多项式在求解时会存在线性相关项,进而使得无法完全求解。
技术实现思路
针对上述平动轴误差测量辨识困难等问题,本专利技术提出一种基于球杆仪测量的机床平动轴位置相关误差辨识方法,适用于数控机床平动轴误差测量与补偿。为了解决上述技术问题,本专利技术采用了如下的技术方案:一种基于球杆仪测量的机床平动轴位置相关误差辨识方法,包括以下步骤:1)基于齐次坐标变换分别建立球杆仪刀具球中心在XY、XZ、YZ平面运动的综合模型;2)分别在XY、XZ、YZ三个平面进行球杆仪测量,获得各个位置处的球杆仪杆长变化量;3)用非整指数的多项式对X、Y、Z三个轴的位置相关误差进行预拟合,将所有预拟合的位置相关误差代入步骤1)建立的综合误差模型,结合步骤2)测得的球杆仪杆长变化量,进行超定方程的求解,得到预拟合多项式的系数;4)将步骤3)求解得到的多项式系数分别代入各个位置相关误差的预拟合多项式中,得到位置相关误差与位置的关系表达式,实现位置相关误差的辨识。作为本专利技术的一种优选方案,步骤1)中根据齐次坐标变换建立球杆仪刀具球的中心在XY、XZ、YZ平面运动的误差综合模型,并忽略部分高阶小量,获得综合误差在各坐标轴上的误差分量:XY平面:其中,ΔxXY、ΔyXY分别表示XY平面测量时,球杆仪刀具球中心的综合误差在X、Y坐标轴上的误差分量,δxx为X轴沿X坐标轴方向的定位误差,δyx为X轴沿Y坐标轴方向的直线度误差,εzx为X轴绕Z坐标轴的角度误差;δyy为Y轴沿Y坐标轴方向的定位误差,δxy为Y轴沿X坐标轴方向的直线度误差,εzy为Y轴绕Z坐标轴的角度误差,r为球杆仪的测量半径,y为Y轴位置;XZ平面:其中,ΔxXZ、ΔzXZ分别表示XZ平面测量时,球杆仪刀具球中心的综合误差在X、Z坐标轴上的误差分量,δzx为X轴沿Z坐标轴方向的直线度误差,εyx为X轴绕Y坐标轴的角度误差;δzz为Z轴沿Z坐标轴方向的定位误差,δxz为Z轴沿X坐标轴方向的直线度误差,εyz为Z轴绕Y坐标轴的角度误差,z为Z轴位置;YZ平面:其中,ΔyYZ、ΔzYZ分别表示YZ平面测量时,球杆仪刀具球中心的综合误差在Y、Z坐标轴上的误差分量,δzy为Y轴沿Z坐标轴方向的直线度误差,εxy为Y轴绕X坐标轴的角度误差;δyz为Z轴沿Y坐标轴方向的直线度误差,εxz为Z轴绕X坐标轴的角度误差。作为本专利技术的另一种优选方案,步骤3)中对位置相关误差元素进行非整指数多项式预拟合:其中,Ep(t)表示位置相关误差的值,t表示运动轴的位置,km表示非整指数多项式的系数,pm表示非整指数多项式各项的指数,其值为非整正实数,下标m=1,2,3……。作为本专利技术的一种改进方案,对每个平面内参与构成球杆仪刀具球中心的综合误差的位置相关误差按照上述中非整指数多项式进行预拟合,并分别代入上述中的综合误差模型,求解非整指数多项式的各项系数。作为本专利技术的进一步改进方案,在对各轴的位置相关误差进行非整指数多项式的预拟合时,可参考常规标准多项式:k1t1+k2t2+k3t3+…+kntN,kn为标准多项式各项系数,N为标准多项式各项的指数,N=1,2,3……,将非整指数多项式的各项指数p1,p2,p3……取值在标准多项式的正整指数N附近,如取值为N±0.05,N±0.1,N±0.15……等,但需要保证在XY平面的位置相关误差预拟合时,δyx与εzx、δyy与εzy预拟合多项式的指数保持不一致;同样,在XZ平面的位置相关误差预拟合时,δzx与εyx、δzz与εyz预拟合多项式的指数保持不一致;在YZ平面的位置相关误差预拟合时,δzy与εxy、δzz与εxz预拟合多项式的指数保持不一致。与现有技术相比,本专利技术具有如下技术效果:1、本专利技术通过间接求解预拟合多项式的系数代替传统对位置相关误差的直接求解,实现位置相关误差的间接辨识。2、本专利技术采用非整指数多项式对位置相关误差预拟合,避免了采用常规多项式预拟合方法在求解时存在的线性相关问题,可以辨识出机床平动轴的单项位置相关误差,且操作简单、节约成本,可用于多轴数控机床的误差补偿,有效提高五轴数控机床的精度。附图说明图1为XY平面测量球杆仪安装示意图;图2为XY平面的球杆仪运行轨迹图;图3为XZ平面的球杆仪运行轨迹图;图4为YZ平面的球杆仪运行轨迹图;图5为XY平面球杆仪杆长变化量简化图;图6为XY、XZ、YZ三平面位置相关误差元素辨识图。具体实施方式下面结合附图和具体实施方式对本专利技术作进一步详细地描述。以一台常见的三轴加工中心为例对本专利技术方法进行说明。三轴加工中心机床通常包括X、Y、Z共3个平动轴。受丝杠副、导轨等部件制造、安装、伺服系统控制等影响,各轴在进给过程中会存在运动误差,最终造成加工误差。平动轴的位置相关误差是机床综合误差的主要来源之一。在机床实际运行中,每个轴均可认为是空间的刚体运动,存在3个平移和3个转动自由度,并形成6个自由度方向上的误差,包括3个位置误差和3个角度误差。以X轴为例说明,X轴的位置相关误差包括三个平移误差(定位误差δxx、Y向直线度误差δyx、Z向直线度误差δzx)以及三个角度误差(倾斜误差εxx、俯仰误差εyx、偏摆误差εzx)。本专利技术提出的基于球杆仪测量的机床平动轴位置相关误差辨识方法,主要包括:综合误差建模、误差测量、误差辨识求解等部分,其具体包括以下步骤:1)基于齐次坐标变换分别建立球杆仪刀具球中心在XY、XZ、YZ平面运动的综合误差模型。以XY平面进行圆测量为例,通常对球杆仪进行如图1所示水平安装,使y0=z0=0。球杆仪在误差存在下的实际长度可以表示为T表示刀具球中心位置变换矩阵,rP分别表示刀具球中心的初始位置矢量和运动后的位置矢量,球杆仪杆长变化量X、Y轴在XY平面联动走圆轨迹,刀具球中心点位置的综合误差ΔXY可本文档来自技高网...

【技术保护点】
1.一种基于球杆仪测量的机床平动轴位置相关误差辨识方法,其特征在于,包括以下步骤:1)基于齐次坐标变换分别建立球杆仪刀具球中心在XY、XZ、YZ平面运动的综合模型;2)分别在XY、XZ、YZ三个平面进行球杆仪测量,获得各个位置处的球杆仪杆长变化量;3)用非整指数的多项式对X、Y、Z三个轴的位置相关误差进行预拟合,利用步骤1)建立的综合误差模型,结合步骤2)测得的球杆仪杆长变化量,求解预拟合的非整指数多项式的各项系数。

【技术特征摘要】
1.一种基于球杆仪测量的机床平动轴位置相关误差辨识方法,其特征在于,包括以下步骤:1)基于齐次坐标变换分别建立球杆仪刀具球中心在XY、XZ、YZ平面运动的综合模型;2)分别在XY、XZ、YZ三个平面进行球杆仪测量,获得各个位置处的球杆仪杆长变化量;3)用非整指数的多项式对X、Y、Z三个轴的位置相关误差进行预拟合,利用步骤1)建立的综合误差模型,结合步骤2)测得的球杆仪杆长变化量,求解预拟合的非整指数多项式的各项系数。2.根据权利要求1所述的基于球杆仪测量的机床平动轴位置相关误差辨识方法,其特征在于,步骤1)中根据齐次坐标变换建立球杆仪刀具球的中心在XY、XZ、YZ平面运动的误差综合模型,并忽略部分高阶小量,获得综合误差在各坐标轴上的误差分量:XY平面:其中,ΔxXY、ΔyXY分别表示XY平面测量时,球杆仪刀具球中心的综合误差在X、Y坐标轴上的误差分量,δxx为X轴沿X坐标轴方向的定位误差,δyx为X轴沿Y坐标轴方向的直线度误差,εzx为X轴绕Z坐标轴的角度误差;δyy为Y轴沿Y坐标轴方向的定位误差,δxy为Y轴沿X坐标轴方向的直线度误差,εzy为Y轴绕Z坐标轴的角度误差,r为球杆仪的测量半径,y为Y轴位置;XZ平面:其中,ΔxXZ、ΔzXZ分别表示XZ平面测量时,球杆仪刀具球中心的综合误差在X、Z坐标轴上的误差分量,δzx为X轴沿Z坐标轴方向的直线度误差,εyx为X轴绕Y坐标轴的角度误差;δzz为Z轴沿Z坐标轴方向的定位误差,δxz为Z轴沿X坐标轴方向的直线度误差,εyz为Z轴绕Y坐标轴的角度误差,z为Z轴位置;YZ平面:其中,ΔyYZ、ΔzYZ分别表示YZ平面测量时,球杆仪刀具球中心的综合误差在Y、Z坐标轴上的误差...

【专利技术属性】
技术研发人员:李国龙徐凯陶小会董鑫操兵
申请(专利权)人:重庆大学
类型:发明
国别省市:重庆,50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1