当前位置: 首页 > 专利查询>河北大学专利>正文

一种渐变型散射结构光谱分析装置制造方法及图纸

技术编号:21921599 阅读:26 留言:0更新日期:2019-08-21 16:17
本实用新型专利技术提供了一种渐变型散射结构光谱分析装置。该装置包括透明的基底,其上设有渐变结构特征的散射粒子层,基底的下方设有用于接收散射光的光电探测器阵列,在散射粒子层上方设有两个共焦透镜,在共焦透镜之间设有一孔径光阑。入射光先经过两个共焦透镜,然后经过散射粒子层,进而在光电探测器阵列上产生不同特征的散射光斑,最后采用一种散射光斑局部窗口化、特征加权且光谱分段复原的方法获得光谱复原矩阵,采用Tikhonov正则化求解大型线性方程组的方法复原光谱。本实用新型专利技术中散射粒子层采用渐变结构特征散射粒子,有效解决了宽光谱分析范围与高光谱分辨率之间的矛盾。

A Gradual Scattering Structure Spectrum Analysis Device

【技术实现步骤摘要】
一种渐变型散射结构光谱分析装置
本技术涉及便携、智能的微型光谱分析仪器
,具体地说是一种渐变型散射结构光谱分析装置。
技术介绍
光谱学的应用涉及我们生活中的几乎所有领域,比如化工、制药、农业生产、生物医疗、食品安全、环境安全、航空航天、能源等等。随着社会的进步以及物联网信息技术、微纳制造、生物光子学等先进科学技术的发展,大型昂贵的光谱分析设备走出实验室,弥补人类对物质的认知缺陷,轻松实现果蔬糖分、水分,药品真伪,皮肤年龄,酒类品质等检测,走进人们的生活已经成为可能。便携、智能的微型光谱技术的发展与应用必将给人民生活水平的提高,生活方式带来革命性的变化。面向智能终端设备(如智能手机)的微型化、集成化光谱分析芯片技术是先进光谱分析技术及仪器的一个新的重要发展方向。开发微型化、成本低、分辨率高、光谱测定范围宽和测量速度快的新型光谱分析装置是目前各国的研究热点。随着微纳光学、计算光学等新兴学科的快速发展,不同于传统光谱仪基本光谱分析原理(如光栅光谱仪、傅里叶光谱仪),科学家们从物理机理、分析原理方面创新性的提出了多种新原理光谱分析技术。例如基于微腔谐振的芯片光谱仪、基于光子晶体的芯片光谱仪、基于光斑模式场、散射场分布的芯片光谱仪以及基于量子点发光光谱仪。研究发现,不同波长的光波通过非均匀散射介质、光波导(光纤)或者特殊排列的衍射介质后产生的光斑具有不同特征的光场模式分布,以光谱为参量对其进行光谱反演复原,可很好的实现入射光光谱成分分布的探测。基于干涉光斑的计算光谱技术可以实现较高光谱分辨率,其面临的主要问题是易于受到外部环境因素的影响,如温度、振动等;利用多模光纤、锥形光纤以及光波导产生干涉光斑,存在空间光难于耦合及耦合器件难以芯片化的问题;相位调制阵列结构及衍射光学元件产生干涉光斑,虽易于集成芯片化,但空间光入射条件(角度、准直性等)的扰动将直接影响测量结果。基于散射光斑的计算光谱技术,具有易于集成芯片化、对空间光入射条件不敏感、环境影响较小的优点,更加符合物联网、智能手机等方面的技术需求。但是,该技术的光谱分析芯片光谱分析范围、光谱分辨率还需进一步提高,如何实现在一定宽度的光谱分析范围内都具有较高的光谱分辨率是基于散射光斑的计算光谱技术发展首要解决的问题。南京邮电大学杨涛课题组提出了“相位调制台阶阵列微型光谱仪”(200910264251.X)、“衍射孔阵列结构微型光谱仪及其高分辨率光谱复原方法”(201210004166.1)以及“一种微型光谱仪”(201210578653.9),三个技术方案中的分光器件分别采用了台阶阵列结构、衍射孔阵列结构以及纳米粒子涂层,但三者结构特征为周期性的或无序的,无法解决光谱分析宽范围与高光谱分辨率间的矛盾。
技术实现思路
本技术的目的就是提供一种渐变型散射结构光谱分析装置,以解决微型光谱分析芯片宽光谱分析范围与高光谱分辨率之间的矛盾。本技术的目的是这样实现的:一种渐变型散射结构光谱分析装置,包括一透明基底,在所述基底表面设有一散射粒子层,所述散射粒子层具有渐变结构特征,散射粒子层的渐变结构特征表现为散射粒子尺寸、密度和/或折射率呈渐变分布,渐变结构特征的渐变形式为散射或辐射;在所述基底的上方设有两个共焦透镜,在两个共焦透镜之间设有一孔径光阑;在所述基底的下方设有光电探测器阵列。在所述基底和所述光电探测器阵列之间设有一厚度可调的距离匹配层。所述散射粒子层上的散射粒子的尺寸为纳米量级至微米量级。所述散射粒子层设置在所述基底的上表面或下表面。所述散射粒子层通过光刻、电子束刻蚀、纳米自组装、蒸镀或旋涂工艺制成。本技术采用具有渐变结构特征的散射粒子层对入射光进行散射,某一波长的光经过具有渐变结构特征的散射粒子层时,经不同结构的散射介质调制后将产生不同特征的散射光斑(简称散斑),宽谱光波则可对应多个散斑特征叠加后的光斑信号,对于不同的散射结构各个波长散斑特征的叠加系数也将各不相同。因此,利用这些多个散射结构的不同组成形式叠加散射光斑进行光谱复原,可有效解决宽光谱分析范围与高光谱分辨率之间的矛盾。本技术采用一种散射光斑局部窗口化、特征加权且光谱分段复原方法,可有效避免串扰、色散、器件制作误差导致的无效数据,采用Tikhonov正则化求解大型线性方程组的方法复原光谱,可以消除失真,实现快速实时光谱复原。附图说明图1是本技术中渐变型散射结构光谱分析装置的结构示意图。图2是本技术实施例中密度渐变型渐变结构特征散射粒子层结构示意图。图3是本技术实施例中大小渐变型渐变结构特征散射粒子层结构示意图。图4是本技术实施例中高度渐变型渐变结构特征散射粒子层结构示意图。图5是本技术光谱复原流程图。图6是散射光斑局部窗口化、特征加权、光谱分段复原过程示意图。图中:1、透镜;2、孔径光阑;3、散射粒子层;4、基底;5、距离匹配层;6、光电探测器阵列;7、散射粒子;8、局部窗口。具体实施方式实施例1,一种渐变型散射结构光谱分析装置。如图1所示,本技术所提供的渐变型散射结构光谱分析装置包括由透明材料制成的基底4,在基底4表面(上表面或下表面均可)上设有一层具有渐变结构特征的散射粒子层3,散射粒子层3由一组纳米至微米尺度的散射粒子构成。散射粒子层3的渐变结构特征表现为散射粒子的尺寸、密度和/或折射率等具有渐变型分布规律,所述渐变型分布规律包括中心向外辐射渐变、由外而内辐射渐变、单方向散射渐变等等。散射粒子层3的渐变结构特征可由散射粒子的多个结构特征参数来实现,其渐变结构也可由多种形式来实现。如图2~图4所示,图2~图4提供了三种散射粒子7的渐变类型,图2中散射粒子的渐变类型为密度渐变型,图3中散射粒子的渐变类型为大小渐变型,图4中散射粒子的渐变类型为高度渐变型。而且,图2~图4中三种渐变结构的渐变形式均为中心向外进行渐变。需要说明的是,本技术中散射粒子层3的渐变结构特征是呈二维分布的渐变结构特征,即:散射粒子沿散射粒子层3的膜层所在面上呈渐变分布,这样,当入射光垂直照射散射粒子层3的膜层所在面时,入射光会被不同结构的散射粒子散射。射散射粒子层3可采用二氧化硅、聚苯乙烯微球、氮化硅、氧化锌(ZnO)、铌酸锂等材料制成。制备射散射粒子层3时可采用光刻、电子束刻蚀、纳米自组装、蒸镀或旋涂等工艺。例如,对于图3所示散射粒子大小由中心向外渐变的结构来说,可以采用旋涂的方法制备。举例来说:散射粒子采用二氧化硅微球(SiO2),可通过正硅酸乙酯水解缩合方法制成,通过调整制备过程中各组分比例和温度得到大小不一的二氧化硅纳米粒子的悬浊液。将不同尺寸的二氧化硅纳米粒子悬浊液混合,利用旋涂的方法,控制旋涂的加速度、速度,获得不同大小二氧化硅纳米粒子沿旋转中心向外渐变分布的渐变结构特征的散射粒子层,通过静电组装的方式将纳米粒子固定于基底上,形成中心向外渐变结构特征的散射粒子层。当散射粒子层3为孔散射结构时,例如可以采用蒸镀、光刻、离子刻蚀的工艺流程制备。通过制作精密的光刻板图形设计实现孔的大小的渐变。散射粒子层3的批量化制作可以通过纳米压印的方法进行模压复制实现。经过征散射粒子层3后的入射光可产生不同特征的散射光斑,利用这些散射光斑可进行光谱复原,解决了宽光谱分析范围与高本文档来自技高网
...

【技术保护点】
1.一种渐变型散射结构光谱分析装置,其特征是,包括一透明基底,在所述基底表面设有一散射粒子层,所述散射粒子层具有渐变结构特征,散射粒子层的渐变结构特征表现为散射粒子尺寸、密度和/或折射率呈渐变分布,渐变结构特征的渐变形式为散射或辐射;在所述基底的上方设有两个共焦透镜,在两个共焦透镜之间设有一孔径光阑;在所述基底的下方设有光电探测器阵列。

【技术特征摘要】
1.一种渐变型散射结构光谱分析装置,其特征是,包括一透明基底,在所述基底表面设有一散射粒子层,所述散射粒子层具有渐变结构特征,散射粒子层的渐变结构特征表现为散射粒子尺寸、密度和/或折射率呈渐变分布,渐变结构特征的渐变形式为散射或辐射;在所述基底的上方设有两个共焦透镜,在两个共焦透镜之间设有一孔径光阑;在所述基底的下方设有光电探测器阵列。2.根据权利要求1所述的渐变型散射结构光谱分析装置,其特征是,在所述基...

【专利技术属性】
技术研发人员:郝鹏陈俊英
申请(专利权)人:河北大学
类型:新型
国别省市:河北,13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1