当前位置: 首页 > 专利查询>南京大学专利>正文

一种基于射频识别技术的室内人数统计方法技术

技术编号:21606448 阅读:34 留言:0更新日期:2019-07-13 18:32
本发明专利技术公开了一种基于射频识别技术的室内人数统计方法,在室内部署若干RFID阅读器以保证读取范围恰当得覆盖室内区域,然后身上携带一定量RFID标签的人在该场景中自由活动。每一个标签会在一定时间段内被若干天线读取到,从时间维度出发,可以得到一个读取天线的集合序列。对于同一个人身上标签,它们对应时间的读取天线集合序列越相近,根据这一特性并利用一种基于密度和距离的聚类算法分析可以统计场景中的人数情况。

An Indoor Number Statistics Method Based on Radio Frequency Identification Technology

【技术实现步骤摘要】
一种基于射频识别技术的室内人数统计方法
本专利技术涉及一种室内人数统计方法,特别是一种基于射频识别技术的室内人数统计方法。
技术介绍
RFID(RadioFrequencyIdentification,射频识别)技术是基于无线通信技术的自动识别技术,它的基本原理是利用射频信号与空间耦合传输特性,自动化地识别被识别物体携带的信息,它最大的优点是非接触识别,并且可以识别多目标。RFID技术目前被越来越广泛地应用于各行各业,包括供应链管理、仓储盘点、电子支付、安全访问控制、目标监测与追踪等。人数统计技术已经逐步应用于人流量较大的多种公共场所,例如超市、学校、地铁和汽车站等。协助安全人员在遇到紧急情况时可以更加及时的处理,保证公民的人身和财产安全。同时还可以帮助管理人员及时的处理公共设施的调配问题,使得公共资源能够合理分配,社会生活有序快速进行。所以这些场景下的人流量数据能够为公共安全、市场决策和资源分配等领域提供有用的信息。目前已有的室内人数统计方法以视频监控系统为主,对环境的光照条件比较敏感,在监控场景环境复杂、目标严重遮挡的情况下检测效果差强人意。
技术实现思路
专利技术目的:本专利技术所要解决的技术问题是针对现有技术的不足,提供一种基于射频识别技术的室内人数统计方法,在人流量较大室内场馆中部署RFID阅读器和天线,持续读取在场景中自由活动的人员身上携带的若干标签,利用读取到的标签信号分析出每一个标签的特征向量,从而通过聚类统计出场景中的人员个数。随着RFID技术的普及,现在的服装、钥匙、卡片等生活用品都被嵌入了RFID标签,几乎每一个出门的时候身上会携带1个或以上的标签,这个现状为本专利技术提供了先决条件。为了解决上述技术问题,本专利技术公开了一种基于射频识别技术(RadioFrequencyIdentification,RFID)的室内人数统计方法,具体步骤如下:步骤1,在室内环境中部署t1个RFID阅读器和天线;步骤2,携带n个(一般为3~5个)RFID标签的人在室内环境中任意活动,使用RFID阅读器读取分散在每个人身上的RFID标签信号;步骤3,对步骤2中采集的RFID标签信号进行数据预处理;步骤4,对预处理后的数据进行聚类分析,获取到每一个RFID标签的特征参数;步骤5,根据步骤4获取到的特征参数利用数字异常值方法获取聚类中心和非聚类中心的分界阈值,从而找出聚类中心,通过聚类中心的个数间接得到人数。步骤1中,合理地布置t1个RFID阅读器和天线以保证读取范围能够覆盖室内区域,一般来说单个天线可以覆盖60平米左右的面积,也要根据场馆的实际情况做相应的调整,比如600平米的场馆,t1可以取值为10。步骤2中,连接在RFID阅读器上的天线读取每个人身上携带的n个RFID标签,从而每一个RFID阅读器能够获取读取范围内n个RFID标签的一系列三元信号组fepc,t,a},包括标签的EPC号epc、读取到标签的时间t、天线编号a。所述EPC号即电子产品码(ElectronicProductCode,EPC)步骤3包括:将步骤2中每一个RFID阅读器获取到的一系列三元信号组按照标签的EPC号进行分组,即相同的EPC号分到一组中(这里按照标签进行分组,所以分组的目的是为了后面对同一个标签的所有数据进行处理后得到反映它特点的一个特征向量v)。对于每一个RFID标签的三元信号组,以时间t0(取值一般在0.5秒到1秒之间)为单位将整个读取时间T进行切片,然后将每个时间片读取到该RFID标签的天线编号组成集合si,从而得到每一个RFID标签的特征向量v=[s1,s2,s3,...,sn],(这里的v对应的是一个标签的数据,它里面的每一个si,则对应这个标签在不同时间段被天线读取的情况。举个例子来说,比如s1={1,2},那就表示在第一个时间段内,这个标签被1号天线和2号天线读取到了)。第n个RFID标签的特征向量记为vn,最后,将空集合占比超过比例r(取值一般在65%到70%左右)的特征向量过滤掉。步骤4包括:针对每两个特征向量v1和v2,使用豪斯多夫距离定义特征向量每一位之间的距离,然后采用欧式距离来计算每两个特征向量之间的距离dij,(设定v1=[s11,s12,s13,...,s1n],v2=[s21,s22,s23,...,s2n],豪斯多夫距离是用于计算v1和v2之间每一位的距离,即计算v1中的s1n和v2中的s2n之间的距离,最后再用欧式距离计算v1和v2的距离)利用dij,采用一种基于密度和距离的聚类算法分析,得到每一个特征向量的局部密度ρ和特征距离δ。步骤4中,所述局部密度采用高斯内核GaussianKernel计算方法:其中为待聚类的数据集,Is={1,2,...,N}为待聚类的数据集对应的下标集,N表示所有的标签个数,S中的数据即对应步骤3中的每一个RFID标签的特征向量,xi为第i个标签对应的特征向量,e是自然常数,ρi是根据高斯内核计算出来的第i个标签的局部密度,参数dc为截断距离,dc>0,需由用户事先指定,在本专利技术中一般选取一个dc使得每个数据点的平均邻居个数为数据点总数的10%左右(可以根据实际效果做相应的调整),这里的邻居,指的是与之距离不超过dc意义下的邻居;步骤4中,所述特征距离计算方式如下:设表示局部密度的一个降序排列下标序,即它满足:在ρi进行降序排列的情况下,qN为第N个局部密度的下标;进行如下定义:表示第qi个标签的特征距离δ,表示第qj个标签的特征距离δ,表示第qi个标签和第qj个标签之间的距离。最终每一个RFID标签的特征向量都得到了一个二元组{ρi,δi},δi表示第i个标签的特征距离。步骤5包括:计算一个将局部密度ρ值和特征距离δ值综合考虑的量γi=ρi*δi2,则γi越大,则表示第i个特征向量越可能是聚类中心,将每一个特征向量的γi值按升序排列,用数字异常值方法从小到大分析每一个γi值,直到找到第一个异常值γ0,以γ0为阈值,取γi>γ0的特征向量为聚类中心,聚类中心的个数即为室内环境中的人数。本专利技术利用同一个人携带的多个标签在部署RFID阅读器的场景中的读取特征表现出一定的相似性,通过聚类的方式统计出场景中的真实人数,提供了一种安全、可靠的室内人数统计方法。与现有的室内人数统计方法相比,本专利技术最大的特点就是利用RFID技术的非视距感知能力,只需要在场景部署一定量的RFID阅读器,伴随着现在大家身上携带了越来越多的标签,本专利技术可以便捷高效地统计室内场景下的人数情况,在更好地保护公民隐私地前提下,为公共安全、市场决策和资源分配等领域提供有用的信息有益效果:通过本方法实现了室内人数统计的目的,只需在室内需要监测人数的场景中部署一定量的RFID阅读器,结合大家身上携带的若干标签,就可以准确地进行室内地人数统计。相对于视频监控系统对于照明环境,目标遮挡等问题的敏感,RFID的非视距识别能力带来了更好的统计效果,同时它也能更好地保障公共环境下活动人员地隐私安全。附图说明下面结合附图和具体实施方式对本专利技术做更进一步的具体说明,本专利技术的上述或其他方面的优点将会变得更加清楚。图1是本专利技术的部署示意图。图2是实施例的流程图。具体实施方式下面结合附图及实施例对本专利技术做进一步说明。本专利技术公开了本文档来自技高网...

【技术保护点】
1.一种基于射频识别技术的室内人数统计方法,其特征在于,包括如下步骤:步骤1,在室内环境中部署t1个RFID阅读器和天线;步骤2,携带n个RFID标签的人在室内环境中任意活动,使用RFID阅读器读取分散在每个人身上的RFID标签信号;步骤3,对步骤2中采集的RFID标签信号进行数据预处理;步骤4,对预处理后的数据进行聚类分析,获取到每一个RFID标签的特征参数;步骤5,根据步骤4获取到的特征参数利用数字异常值方法获取聚类中心和非聚类中心的分界阈值,从而找出聚类中心,通过聚类中心的个数得到人数。

【技术特征摘要】
1.一种基于射频识别技术的室内人数统计方法,其特征在于,包括如下步骤:步骤1,在室内环境中部署t1个RFID阅读器和天线;步骤2,携带n个RFID标签的人在室内环境中任意活动,使用RFID阅读器读取分散在每个人身上的RFID标签信号;步骤3,对步骤2中采集的RFID标签信号进行数据预处理;步骤4,对预处理后的数据进行聚类分析,获取到每一个RFID标签的特征参数;步骤5,根据步骤4获取到的特征参数利用数字异常值方法获取聚类中心和非聚类中心的分界阈值,从而找出聚类中心,通过聚类中心的个数得到人数。2.根据权利要求1所述的方法,其特征在于,步骤1中,布置t个RFID阅读器和天线以保证读取范围能够覆盖室内区域。3.根据权利要求2所述的方法,其特征在于,步骤2中,连接在RFID阅读器上的天线读取每个人身上携带的n个RFID标签,从而每一个RFID阅读器能够获取读取范围内n个RFID标签的一系列三元信号组{epc,t,a},包括标签的EPC号epc、读取到标签的时间t、天线编号a,所述EPC号即电子产品码。4.根据权利要求3所述的方法,其特征在于,步骤3包括:将步骤2中每一个RFID阅读器获取到的一系列三元信号组按照标签的EPC号进行分组,即相同的EPC号分到一组中,对于每一个RFID标签的三元信号组,以时间t0为单位将整个读取时间T进行切片,然后将每个时间片读取到该RFID标签的天线编号组成集合si,从而得到每一个RFID标签的特征向量v=[s1,s2,s3,...,sn],第n个RFID标签的特征向量记为vn,最后,将空集合占比超过比例r的特征向量过滤掉。5.根据...

【专利技术属性】
技术研发人员:刘佳陈力军郁裕杰陈星宇张晓聪李珍珠严颖丽边星宇许林龚华林程唯
申请(专利权)人:南京大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1