【技术实现步骤摘要】
一种基于众智集成学习的图像分类方法
本专利技术涉及图像处理
,尤其涉及一种基于集成学习的图像分类方法。本专利技术能够便于对图像进行分类,分类步骤简单,便于实现,且能够提高分类精确度,避免出现分类误差,方法简单,使用方便。
技术介绍
图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。即是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。图像分类的传统方法是特征描述及检测,这类传统方法可能对于一些简单的图像分类是有效的,但由于实际情况非常复杂,传统的分类方法不堪重负。现在,我们不再试图用代码来描述每一个图像类别,决定转而使用机器学习的方法处理图像分类问题。随着互联网的快速发展以及计算机的快速发展,数字图像的获取也变得越来越容易。因此,可用的数字图像正快速地增长并且在越来越多的行业中得到应用。图像分类技术是一种辅助用户高效地获取期望图像的方法,同时也是很多与图像相关的人机交互系统取得成功的基础,如人脸识别系统、推荐系统等。特别是现在深度学习在图像处理的应用更是广泛,但是其可解释性差,特别是处理 ...
【技术保护点】
1.一种基于众智集成学习的图像分类方法,其特征在于包括:(1)图像预处理:获取带有标注的图像数据集,该步骤首先对图像进行重命名,然后通过目标检测对原始图像进行归一化,包括尺寸归一化、增强光照操作,并将其转换为灰度图像;(2)特征选择:通过对每幅灰度图像进行主成分分析PCA和核PCA,提取出保留95%以上信息量的特征;(3)基础学习模型构建:采用了一种基础学习模型,即使用支持向量机来构建基础分类器,并使用不同的核函数:高斯核函数、拉普拉斯核函数、多项式核函数Polynomial和PolyPlus;通过对核函数的调参,增加模型的多样性;(4)多个基本学习模型的集合:使用随机森林 ...
【技术特征摘要】
1.一种基于众智集成学习的图像分类方法,其特征在于包括:(1)图像预处理:获取带有标注的图像数据集,该步骤首先对图像进行重命名,然后通过目标检测对原始图像进行归一化,包括尺寸归一化、增强光照操作,并将其转换为灰度图像;(2)特征选择:通过对每幅灰度图像进行主成分分析PCA和核PCA,提取出保留95%以上信息量的特征;(3)基础学习模型构建:采用了一种基础学习模型,即使用支持向量机来构建基础分类器,并使用不同的核函数:高斯核函数、拉普拉斯核函数、多项式核函数Polynomial和PolyPlus;通过对核函数的调参,增加模型的多样性;(4)多个基本学习模型的集合:使用随机森林和和svm的结合,对数据集进行随机抽取样本和特征;对于随机训练集,使用30个基础学习模型,即支持向量机来构建基础分类器;第一、基础分类器:获取带有标注的图像数据集,使用K折交叉验证方法来评估分类器的性能;所有的图像被等分成K个子集,每个子集包含其中的三分之一的图像;每次实验中,选择K-1个子集作为训练集,剩余一个子集作为测试集,执行基本分类器;通过两种特征提取方法,即PCA、KPCA特征和基础分类器SVM的组合,一共建立五种独立的基础分类器,分别使用svm、pca、kpca、pca和svm、kpca和svm五种方法进行K折交叉验证评估分类性能;第二、多数投票:一共包含N个样本,其中实验组:a张,对照组:b张,然后将预处理后的每张灰度图像展开成M*M,此处预处理归一化后图像的尺寸为M维向量的形式;接下来,一共构建30个子训练集,每个子训练集的构建过程如下:(1)从N个训练集中,以1...
【专利技术属性】
技术研发人员:李建强,姚国红,赵青,高翔,
申请(专利权)人:北京工业大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。