基于三级阈值变步长自适应压缩感知技术的信道估计方法技术

技术编号:21278156 阅读:77 留言:0更新日期:2019-06-06 10:41
基于三级阈值变步长自适应压缩感知技术的信道估计方法,属于信道估计技术领域。本发明专利技术针对传统信道估计方案存在的不足,提出基于MVssAMP的信道估计方法。该方法在信道的稀疏度未知的情况下,以信道发送端导频和信道接收端导频为已知条件,给定一个初始步长,然后通过设定三级阈值实现对于步长的有效控制,使得步长能够以合理的速度增大,直到接近真实的信道稀疏度,此时信道的估计精确度也逐渐提升。该方法具有较高信道估计的精确度。此外,在信道的数据发送端仅仅需要插入少量的导频信号便可以在数据输出端精确的重建出原始稀疏信道,使得导频信号的插入方式突破了奈奎斯特准则的限制,大大节省了频带资源。

Channel Estimation Method Based on Three-stage Threshold Variable Step-size Adaptive Compressed Sensing Technology

The channel estimation method based on three-level threshold variable step adaptive compressed sensing technology belongs to the field of channel estimation technology. The invention proposes a channel estimation method based on MVssAMP to overcome the shortcomings of the traditional channel estimation scheme. When the channel sparsity is unknown, the method takes the pilot of the transmitter and the receiver as the known condition, gives an initial step size, and then achieves effective control of the step size by setting a three-level threshold, so that the step size can increase at a reasonable speed until it approaches the real channel sparsity, and the estimation accuracy of the channel is gradually improved. This method has high accuracy of channel estimation. In addition, the original sparse channel can be reconstructed precisely by inserting only a few pilot signals at the data transmitter of the channel, which makes the insertion of pilot signals break through the limitation of Nyquist criterion and greatly saves the frequency band resources.

【技术实现步骤摘要】
基于三级阈值变步长自适应压缩感知技术的信道估计方法
本专利技术属于信道估计
,具体涉及一种基于三级阈值变步长自适应压缩感知技术的信道估计方法。
技术介绍
正交频分复用(OrthogonalFrequencyDivisionMultiplexing,OFDM)广泛应用于无线通信领域,因此对OFDM系统进行信道估计成为无线信道的关键技术。传统的信道估计方法在插入导频时需要满足奈奎斯特准则,使得导频插入数量多,并且信道估计的精度较低,因此,信道估计技术引起广泛关注。当前,针对这一问题,有学者提出了基于压缩感知技术的信道估计方案,其借助压缩感知技术能够在较大压缩率下重构出原始稀疏数据信息的原理,以及信道在大部分情况下都具有稀疏性的特点,将压缩感知技术应用在信道估计中。这种方法极大的减少了导频插入的数量,提高了频谱利用率,但是传统的压缩感知算法如OMP等,需要以信道的稀疏度为先验信息,这使得其在信道估计中的应用具有局限性。最近有学者提出了将稀疏度自适应的压缩感知算法应用在信道估计中,从而打破了压缩感知在信道估计中需要已知稀疏度的缺陷,但是这种技术的耗时较长,稀疏度估计的精确程度不高。基于压缩感知能够在较大压缩率下进行信道估计的特性以及稀疏度自适应算法的原理,本专利对稀疏度自适应的步长选取方式进行了改进,增强了稀疏度自适应算法步长选取的灵活性,从而提高了稀疏度估计的精确程度,进而提高信道估计的性能。
技术实现思路
本专利技术的目的在于提供一种基于三级阈值变步长自适应压缩感知技术的信道估计方法。本专利技术的目的是这样实现的:基于三级阈值变步长自适应压缩感知技术的信道估计方法,包括如下步骤:步骤1:在信道的数据发送端插入导频,将带有导频的数据信号通过带有加性高斯白噪声的信道模型;步骤2:在信道接收端获得导频位置的信号信息;步骤3:设置初始步长,根据发送端和接收端的导频信息利用改进的变步长自适应匹配追踪方法进行初步信道估计;步骤4:计算估计误差,利用改进的变步长自适应匹配追踪方法中三级阈值确定步长变化的大小,增加步长,得到新的信道稀疏度;步骤5:循环执行步骤4,直到满足信道估计精度。所述步骤4中改进的变步长自适应匹配追踪方法具体流程包括:步骤(4.1)输入观测矩阵A,压缩向量yp,初始步长S;其中A的维数是m×n,yp的维数是m×1,S为正整数;步骤(4.2)初始化信道估计值残差r0=yp,支撑集支撑集大小L=S,迭代次数k=1;循环执行步骤(4.3)~(4.12);步骤(4.3)计算内积:|Ark-1|,取内积最大的L个值对应的原子的序号,存入集合Nk,得到候选集Ck=Fk-1∪Nk;步骤(4.4)计算取最大的L个值对应的原子的序号,存入支撑集F,计算估计信道计算残差步骤(4.5)判断是否满足迭代停止条件:其中T1为正常数,表示一级阈值;若满足,执行步骤(4.6),若不满足,执行步骤(4.8);步骤(4.6)判断是否满足迭代停止条件:其中T2为正常数,表示二级阈值;若满足,执行步骤(4.7),若不满足,执行步骤(4.11);步骤(4.7)判断是否满足迭代停止条件:其中T3为正常数,表示三级阈值;若满足,则停止迭代,得到信道估计值若不满足,执行步骤(4.12);步骤(4.8)判断是否满足||r||2≥||rk-1||2,若满足,执行步骤(4.9),若不满足,执行步骤(4.10);步骤(4.9)进入下一阶段,支撑集F的大小增大为L=L+S,迭代次数为k=k+1;步骤(4.10)更新支撑集Fk=F,更新残差rk=r,迭代次数为k=k+1;步骤(4.11)进入下一阶段,改变步长支撑集F的大小增大为L=L+S,迭代次数为k=k+1;步骤(4.12)进入下一阶段,改变步长支撑集F的大小增大为L=L+S,迭代次数为k=k+1;步骤(4.13)输出目标稀疏向量所述步骤2中在信道接收端获得导频位置的信号为yp=diag(xp)Fh+wp=Ah+wp,其中xp为发送端的导频信号,yp为接收端的导频信号,h表示时域信道,F为傅里叶变换矩阵,维数为n×1,wp表示加性高斯白噪声,维数为n×1。本专利技术有益效果在于:(1)采用压缩感知技术,能够突破传统信道估计方式中导频插入需要满足奈奎斯特定理的束缚,减少了导频的插入数量,提高了频带利用率;(2)采用的新的压缩感知算法—改进的变步长自适应匹配追踪(MVssAMP)算法相比较于其他应用于信道估计的压缩感知算法而言信道估计的精确度高;(3)采用的压缩感知算法步长选取的灵活性高,稀疏度估计的精度高。附图说明图1为本专利技术整体实现框图;图2(a)为本专利技术实际信道线形效果图;图2(b)为本专利技术估计信道线形效果图;图3(a)为本专利技术实际信道条形效果图;图3(b)为本专利技术估计信道条形效果图;图4为本专利技术在不同信噪比条件下的信道估计误差分析;图5为针对本专利技术不同信噪比条件下的信号传输误码率分析。具体实施方式下面结合方法具体步骤以及附图仿真结果对本专利技术做更进一步描述。以下实施例用于说明本申请,但不用来限制本申请的范围。本申请专利技术针对信道估计效果不佳的情况,提出了一种基于三级阈值变步长自适应压缩感知技术的信道估计方法。本信道估计方案的要点为利用新的压缩感知算法进行稀疏度未知情况下的信道估计。本专利技术围绕传统信道估计方案的缺点进行改进,利用提出的MVssAMP算法进行信道估计,在信道的数据发送端只需要插入少量的导频信息,然后在信道接收端得到相应的输出导频信息,将这些发送的导频信息和接收的导频信息代入MVssAMP算法,就能够估计出稀疏信道。这种信道估计方式突破了传统信道估计中导频插入需要满足奈奎斯特准则的束缚,提高了信道估计精确度。(1)利用压缩感知表示稀疏信道:在信号经过无线信道进行传输的过程中,接收端接收到的导频信号为yp=diag(xp)Fh+wp(1-1)其中,xp是发送端的导频信号,diag(xp)是将xp作为主对角元素的对角矩阵,yp是接收端的导频信号,h是时域信道,wp~N(0,σw2)是频域噪声,σw2是噪声的方差,F是傅里叶变换矩阵。令A=diag(xp)F,有:yp=Ah+wp(1-2)需要注意的是,yp的维数与导频的数目相同,因此,当导频的数目小于信道长度时,式(1-2)为欠定线性方程组。即,稀疏信道估计是欠定线性方程组在稀疏约束下的一个逆解过程。所以,稀疏信道估计问题的关键是如何在噪声条件下精确的求解出上述欠定线性方程组的h。压缩感知技术解决的问题是如何在高压缩率条件下得到欠定线性方程组的最优解,因此将压缩感知技术应用于信道估计在理论上是可行的。将yp视为压缩感知技术中压缩后的信号,A视为压缩感知技术中的观测矩阵,h视为压缩感知技术中的稀疏解,则根据压缩感知的基本原理,(1-2)式可以表示为:min||h||0s.t.yp=Ah+wp(1-3)其中,||h||0表示向量h的L0范数。所以,稀疏信道估计问题转化为式(1-3)的求解问题。(2)利用提出的MVssAMP算法估计稀疏信道:针对信道估计精确程度不高的问题,采用本文提出的MVssAMP算法来进行信道估计过程。MVssAMP算法的基本思想是:设定一个初始步长S来作为信道的初始稀疏度(抽头数),然后利用内积匹配准则计算观测矩阵A与接收导频信号本文档来自技高网...

【技术保护点】
1.基于三级阈值变步长自适应压缩感知技术的信道估计方法,其特征在于,包括:(1)在信道的数据发送端插入导频,将带有导频的数据信号通过带有加性高斯白噪声的信道模型;(2)在信道接收端获得导频位置的信号信息;(3)设置初始步长,根据发送端和接收端的导频信息利用改进的变步长自适应匹配追踪方法进行初步信道估计;(4)计算估计误差,利用改进的变步长自适应匹配追踪方法中三级阈值确定步长变化的大小,增加步长,得到新的信道稀疏度;(5)循环执行步骤(4),直到满足信道估计精度。

【技术特征摘要】
1.基于三级阈值变步长自适应压缩感知技术的信道估计方法,其特征在于,包括:(1)在信道的数据发送端插入导频,将带有导频的数据信号通过带有加性高斯白噪声的信道模型;(2)在信道接收端获得导频位置的信号信息;(3)设置初始步长,根据发送端和接收端的导频信息利用改进的变步长自适应匹配追踪方法进行初步信道估计;(4)计算估计误差,利用改进的变步长自适应匹配追踪方法中三级阈值确定步长变化的大小,增加步长,得到新的信道稀疏度;(5)循环执行步骤(4),直到满足信道估计精度。2.根据权利要求1所述的基于三级阈值变步长自适应压缩感知技术的信道估计方法,其特征在于:所述步骤(4)中改进的变步长自适应匹配追踪方法具体流程包括,(4.1)输入观测矩阵A,压缩向量yp,初始步长S;其中A的维数是m×n,yp的维数是m×1,S为正整数;(4.2)初始化信道估计值残差r0=yp,支撑集支撑集大小L=S,迭代次数k=1;循环执行步骤(4.3)~(4.12);(4.3)计算内积:|Ark-1|,取内积最大的L个值对应的原子的序号,存入集合Nk,得到候选集Ck=Fk-1∪Nk;(4.4)计算取最大的L个值对应的原子的序号,存入支撑集F,计算估计信道计算残差(4.5)判断是否满足迭代停止条件:其中T1为正常数,表示一级阈值;若...

【专利技术属性】
技术研发人员:项建弘岳惠惠殷祥军王霖郁魏俊豪叶鹏飞何明琪刘威德沈鹏宇王恒侯刚阳
申请(专利权)人:哈尔滨工程大学
类型:发明
国别省市:黑龙江,23

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1