将热能转变成机械能的方法和设备技术

技术编号:2115018 阅读:226 留言:0更新日期:2012-04-11 18:40
一种在具有旋转式燃烧室的燃气涡轮发动机中将热能转变成机械能的方法,包含如下步骤:压缩气流并使它绕发动机的轴线旋转;然后将气流导入旋转式燃烧室中并使之加热;再使气流在燃烧室出口处膨胀并旋转,其特征在于,导入燃烧室的气流的旋转方向与燃烧室的旋转方向相同,但与在燃烧室出口处的气流的旋转方向相反。(*该技术在2014年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及动力工程,更具体地说,涉及一种在燃气涡轮发动机中将热能转变成机械能的方法,并且涉及一种实施上述方法的燃气涡轮发动机。一种公知的在带有一个与多个叶型通道式导向器相适应的旋转式燃烧室的燃气涡轮发动机中将热能转变成机械能的方法包含在燃烧室的入口前面压缩气流,并使之绕燃气涡轮发动机的轴线旋转;在燃烧室中加热气流;使气流在燃烧室出口处膨胀;然后引入涡轮进一步膨胀(参见苏联专利No.576060,1977年10月5日)。上述的燃气涡轮发动机含有一个涡轮和一个压气机,以及一个安装成可相对于涡轮旋转的燃烧室,该燃烧室带有一个入口、一个出口和多条由多个壁构成的内部叶型通道。上述的壁在燃烧室的出口处形成使气流膨胀的喷嘴,并且它们以这样一种方式延伸,即它们在燃烧室的展开平面上的投影相对于通过发动机纵向轴线的平面与上述展开平面交线倾斜的夹角在燃烧室的出口处为90~150°角。当采用现有技术的方法时,从压气机供入燃烧室入口的气流的旋转方向与燃烧室的转动方向相反。由于这种流动方向的急剧变化使流向燃烧室的气流有很多不能进入燃烧室中。在现代燃气涡轮发动机中,当燃烧室入口的空气流速达200m/s时,入口的空气损失量为8~10%,当空气流速为250~300m/s时,该损失量为12~13%。如果燃烧室转动方向与入口处气流的旋转方向相反,上述的损失量至少还要增大一倍,可达20~30%。显然,采用上述现有技术的方法和实施该方法的燃气涡轮发动机是完全行不通的。另外,在上述的现有技术的发动机中,由于燃烧室和涡轮的转动方向相反,所以它们的轴之间还必须设置轴承。这些轴承在高温高速下工作,故必须对它们提出严格的要求。这不仅使发动机制造复杂化并提高了成本,而且在很大程度上影响到发动机工作的可靠性,并且维持也较为困难。然而,与此同时,采用上述的方法和发动机似乎还有令人稍感兴趣之处,那就是燃烧室的转动可附带发出机械动力。此外,采用转动式的燃烧室就无需在涡轮入口处设置专门的喷嘴。采用旋转式燃烧室的另一优点是有可能在燃烧区之外(也就是在形成燃料混合物的区域内)设置燃烧室叶型通道壁的进气边。本专利技术的目的是针对现有技术存在的问题而提供一种上面所述的方法和燃气涡轮发动机,在本专利技术的发动机中,气流通过发动机中压气机与涡轮之间的流道的流动以及燃烧室内部的几何形状可使气流的流动方向变化最小。上述问题由本专利技术提出的方法得到解决,该方法用以在一种带有旋转式燃烧室的燃气涡轮发动机中将热能转变成机械能,在该方法中,将气流压缩,并使之绕发动机的轴线旋转,然后进入旋转式燃烧室并在燃烧室中加热,再在燃烧室出口处膨胀和旋转,按照本专利技术,进入燃烧室的气流的旋转方向与燃烧室的转动方向相同,但在燃烧室出口处它们的旋转方向则相反。采用本专利技术的方法,在燃烧室入口处气流的流动方向只有轻微的改变,因为在燃烧室的入口处和出口处,气流绕发动机纵向轴线旋转的方向相反,而在压气机的出口处气流的旋转方向与燃烧室的转动方向相同。在此情况下,燃烧室的进气损失量低于非旋转式燃烧室的进气损失,因为进入非旋转式燃烧室的气流必须是旋转速度最低的。这也可造成进气损失,而采用旋转式燃烧室就不要求这样。另外,本专利技术的方法具有使旋转式燃烧室(例如,将它安装在压气机轴上)产生机械动力的实际可能性。由于在燃烧室中耗费了一部分热能,故可降低气流到达涡轮叶片时的温度。因此,可在不降低发动机的效率的情况下减少用于将气流的温度降低到允许进入涡轮时所需的冷却剂量。而且,由于燃烧室是转动的,可使非冷却气流的膨胀比提高到1.2~1.5倍。最好是,流体在燃烧室入口处的前面绕燃气涡轮发动机纵向轴线旋转的角度可以变化,这样可使燃烧室的涡轮作用增大,这一点对于地面车辆用的燃气涡轮发动机尤其重要,因为这种发动机要在负荷频繁突变从而引起转矩变化的条件下工作。导入燃烧室的已膨胀和旋转的气流最好在涡轮入口的前面与冷却剂混合。这不仅降低了气流进入涡轮之前的温度,而且可减少燃烧室前面的被压缩气流,从而提高效率。气流在与冷却剂混合的过程中最好能进一步膨胀。从而可保证进一步利用气流在进入涡轮之前进行最后冷却前由于膨胀造成的温差,以便提高效率和增大输出功率。如果冷却剂在与气流混合之前进行加热,那么就会由于通过涡轮的流速增大而提高发动机的效率。最好是,气流在燃烧室出口的前面膨胀和旋转的初始阶段就与冷却剂混合,从而使燃烧室通道壁得以冷却,以便降低对所用材料的要求。而且气流的温度由于气流经过混合后相对流速较低,故可更有效地降低气流的温度,并且气流混合的损失也减少。上述的问题还通过本专利技术的燃气涡轮发动机来解决,所述的燃气涡轮发动机含有一个涡轮、一个压气机和一个安装成可相对于涡轮转动的燃烧室,该燃烧室具有一个入口、一个出口和多条由多个壁构成的内部叶型通道,所述的通道壁在燃烧室出口处形成气流的膨胀喷嘴,而且,在燃烧室的出口处,它们在燃烧室的展开平面上的投影相对于通过发动机纵向轴线的平面与上述展开平面的交线的倾斜角α可达150°,按照本专利技术,在燃烧室入口处叶型通道壁在燃烧室展开平面上的投影相对于通过发动机纵向轴线的平面与上述展开平面的交线的倾斜角β为0~75°。在一种燃气涡轮发动机中,含有一个向心式涡轮、一个压气机和一个安装成可相对于涡轮转动的燃烧室,该燃烧室带有一个入口、一个出口和多条由多个在燃烧室出口处形成气流膨胀喷嘴的壁构成的内部叶型通道,按照本专利技术,燃烧室与涡轮同轴地安装,叶型通道壁的延伸方向在燃烧室出口处相对于燃烧室的半径倾斜一个α角,该角α可达50°,并且在燃烧室入口处相对于燃烧室的半径的倾斜角β为0~75°。采用这种发动机结构,在燃烧室入口处气流的流动方向只有微小的变化,因为上述的α和β角限定了叶型通道壁的位置,并且,在燃烧室的入口和出口处,气流绕发动机纵向轴线旋转的方向是相反的,而在压气机出口处气流的旋转方向与燃烧室的转动方向是相同的。在此情况下,气流进入燃烧室的损失量低于进入非旋转式燃烧室的损失量,因为进入非旋转式燃烧室必须使气流的旋转速度减至最小,从而会造成损失,但进入旋转式燃烧室就不要求气流减速。另外,可以从旋转式燃烧室(例如通过将它安装在压气机轴上)获得机械动力。这就可降低到达涡轮叶片的气流温度,因为一部分热能在燃烧室中被消耗了。结果,可显著减少用于将流体的温度降低到允许进入涡轮时所需的冷却剂量,而又不降低发动机的效率。而且,非冷却气流的膨胀比可增加到1.2~1.5倍。由于在涡轮的入口处,叶型通道壁在燃烧室展开平面上的投影相对于通过发动机纵向轴线的平面与上述展开平面的交线的倾斜角α小于0,故得到一种不定的气流,由于气流是撞击性地进入燃烧室的,故使材料的损失增加。另外,燃烧室将起到一种排气机的作用,也会造成较大的损失。如果β角大于75°,燃烧室供气流通过的截面积将减小,则会造成发动机的比功率下降。最好在燃烧室入口前面设置一个用来改变来自压气机的气流的旋转角的装置。这样就可增强燃烧室的涡轮作用,这一点对用于地面车辆的燃气涡轮发动机尤其重要,因为这种发动机往往是在负荷突然变化而引起扭矩波动的情况下工作。上述的改变来自压气机的气流的旋转方向的装置最好是可控制的,以便使燃烧室具有最佳的工作条件,使之适应快速变化的负荷。叶型通道壁带有内部空腔,本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:阿纳托利·M·拉赫曼洛夫
申请(专利权)人:伊雅·Y·亚诺夫斯基阿纳托利·M·拉赫曼洛夫
类型:发明
国别省市:

相关技术
    暂无相关专利
网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利