当前位置: 首页 > 专利查询>吉林大学专利>正文

双模式六维力/力矩传感器标定装置及标定方法制造方法及图纸

技术编号:20990106 阅读:27 留言:0更新日期:2019-04-29 21:12
本发明专利技术涉及一种双模式六维力/力矩传感器标定装置及标定方法,属于传感器标定领域。双模式为一般标定模式和Z向力矩标定模式;标定支架安装在标定底座上,标定支架两侧分别安装上滑轮组件、下滑轮组件,标定支架的横梁中部安装一个滑轮A;传感器竖直安装在标定底座上、力/力矩加载臂通过螺栓连接在传感器上构成所述的一般标定模式;或者通过U型支架、Z向力矩加载臂水平安装在标定支架上构成所述的Z向力矩标定模式。结构简单、操作简便、加载力值稳定、精度高、通用性好等优点,能够对各个方向单维力/力矩进行单独标定,又能对各个方向的力矩进行复合加载,同时整体采用纯机械结构避免电磁干扰对标定精度的影响。

Calibration Device and Method of Dual-mode Six-dimensional Force/Torque Sensor

The invention relates to a dual-mode six-dimensional force/moment sensor calibration device and a calibration method, belonging to the field of sensor calibration. Two modes are general calibration mode and Z-direction moment calibration mode; the calibration bracket is installed on the calibration base, the two sides of the calibration bracket are installed with pulley components and pulley components respectively, and a pulley A is installed in the middle of the cross beam of the calibration bracket; the sensor is installed vertically on the calibration base, and the force/moment loading arm is connected by bolts to the sensor to form the general calibration mode described; or The Z-direction moment calibration mode is composed of a U-shaped bracket and a Z-direction moment loading arm horizontally mounted on the calibration bracket. It has the advantages of simple structure, simple operation, stable loading force, high accuracy and good versatility. It can independently calibrate the single-dimensional force/moment in all directions, and can also load the torques in all directions. At the same time, it adopts pure mechanical structure to avoid the influence of electromagnetic interference on the calibration accuracy.

【技术实现步骤摘要】
双模式六维力/力矩传感器标定装置及标定方法
本专利技术涉及传感器标定领域,特别涉及一种双模式六维力/力矩传感器标定装置及标定方法,适用于六维力/力矩传感器的标定。
技术介绍
六维力传感器是一种能够同时感知空间笛卡尔坐标系中的三维力信息和三维力矩信息的传感器。广泛应用于航空航天、制造与装配、体育竞技以及遥操作机器人等领域。六维力传感器由于制造、装配、贴片误差及电路噪声干扰等影响,造成六维力/力矩传感器的输入力值与输出值之间的关系不确定。需要通过标定实验来检测六维力传感器的实际性能指标,目的在于确定输入与输出之间的关系。标定装置在六维力传感器的整个研制过程中占有重要的地位。目前,六维力/力矩传感器标定装置的加载力方式主要有千斤顶式、液压式、手摇减速机式、砝码式等。其中千斤顶式、液压式、手摇减速机式由于本身加载力值不稳定、加载精度差应用场合较少,普遍采用砝码式加载。中国专利申请公布号为:CN101936797A公开了一种采用砝码加载的方式对六维力传感器进行标定,该装置依然无法实现对六维力/力矩传感器进行单维力/力矩施加载荷。中国专利申请公布号为:CN103604561B、CN103528755B公开了可实现单维力/力矩施加载荷加载的六维力/力矩传感器标定装置,但两装置同时存在装置复杂、体积大、装配要求高,且由于采用电机驱动工作台对标定有一定电磁干扰的问题。
技术实现思路
本专利技术的目的在于提供一种双模式六维力/力矩传感器标定装置及标定方法,解决了现有技术存在的上述问题。本专利技术通过砝码加载,能够对各个方向单维力/力矩进行单独标定,又能对各个方向的力矩进行复合加载,同时整体采用纯机械结构避免电磁干扰对标定精度的影响。本专利技术的上述目的通过以下技术方案实现:双模式六维力/力矩传感器标定装置,双模式为一般标定模式和Z向力矩标定模式;标定装置结构包括标定底座1、标定支架2、上滑轮组件3、下滑轮组件4、力/力矩加载臂5,所述标定支架2安装在标定底座1上,标定支架2两侧分别安装上滑轮组件3、下滑轮组件4,标定支架2的横梁中部安装一个滑轮A6;传感器7竖直安装在标定底座1上、力/力矩加载臂5通过螺栓连接在传感器7上构成所述的一般标定模式;或者通过U型支架8、Z向力矩加载臂9水平安装在标定支架2上构成所述的Z向力矩标定模式。所述的标定底座1设置有传感器连接孔A101、标定支架连接孔102;标定底座1底面设置U型槽103,U型槽内设螺纹孔,为调整螺栓B403预留安装空间,利用调整螺栓403与螺纹孔的相对运动实现对下滑轮组件4的位置调整;所述的标定支架2上设有U型支架连接孔201、标定支架安装孔202、上滑轮组件调整孔203、下滑轮组件调整孔205、长圆孔207、方形通孔209、通孔A210及横梁滑轮安装孔212,其中横梁滑轮安装孔212为滑轮A6提供支撑,并使力/力矩加载臂5与滑轮6间的钢丝绳与力/力矩加载臂5的轴线重合。所述的上滑轮组件3包括调整螺栓A303、调整架A305、滑轮B307、滑轮C308,所述上滑轮组件3通过调整螺栓A303与调整架305的相对运动,带动上滑轮组件3整体在上滑轮组件调整孔203内滑动,实现滑轮B307、滑轮C308位置的调整;所述的滑轮组件4包括调整螺栓B403、调整架B405、滑轮D407,所述下滑轮组件4通过调整螺栓B403与调整架B405的相对运动,带动下滑轮组件4整体在下滑轮组件调整孔205内滑动,实现滑轮D407位置的调整。所述的力/力矩加载臂5包括四个通孔B501、上螺栓A505、下螺栓A506、凹槽A507、凹槽B508、凹槽C509、凹槽D510及传感器连接孔B511,其中上螺栓A505、下螺栓A506实现钢丝绳一端的紧固。所述的U型支架8整体为U型,为传感器7的安装预留空间,并实现Z向力矩的加载;通过U型支架连接孔201安装于标定支架2中部,传感器7水平安装于U型支架8内部。所述的Z向力矩加载臂9包括连接孔901、上螺栓B902、下螺栓B903,Z向力矩加载臂9安装于传感器7的受力端,且处于上滑轮组件3、下滑轮组件4的滑轮滑道切线构成的平面内,上螺栓B902、下螺栓B903实现钢丝绳一端的紧固。本专利技术的另一目的在于提供一种双模式六维力/力矩传感器标定方法,包括如下步骤:步骤(1)、力值加载及数据采集;步骤(2)、力矩加载及数据采集;步骤(3)、计算标定矩阵。步骤(1)所述的力值加载及数据采集是:1.1、在一般标定模式下,将钢丝绳一端连接于下螺栓A506并将螺母旋入拧紧,将钢丝绳紧固,穿过力/力矩加载臂的凹槽A507、标定支架的长圆孔207,绕过下滑轮组件4中的滑轮D407并竖直向下延伸,调节调整螺栓B403使力/力矩加载臂5至下滑轮组件4之间的钢丝绳位置水平,在钢丝绳竖直方向末端加载不同质量砝码,记录加载力值与六维力/力矩传感器的六通道输出值,完成Fx正、负方向的力值加载及数据采集;1.2、将传感器顺时针旋转90°安装,重复步骤1.1,完成Fy正、负方向的力值加载及数据采集;1.3、在一般标定模式下,将钢丝绳一端连接于上螺栓A505并将螺母旋入拧紧,将钢丝绳紧固,穿过标定支架的方形通孔209,绕过滑轮A6水平延伸,继续绕过上滑轮组件3中的滑轮B307并竖直向下延伸,调节调整螺栓B403使滑轮A6至上滑轮组件3之间的钢丝绳位置水平,在钢丝绳竖直方向末端加载不同质量砝码,记录加载力值与六维力/力矩传感器的六通道输出值,完成Fz正方向的力值加载及数据采集;1.4、在一般标定模式下,卸掉力/力矩加载臂5,在传感器7受力端中心直接加载砝码,记录加载力值与六维力/力矩传感器的六通道输出值,完成Fz正方向的力值加载及数据采集。步骤(2)所述的力矩加载及数据采集是:2.1、在一般标定模式下,将钢丝绳一端连接于上螺栓A505并将螺母旋入拧紧,将钢丝绳紧固,依次穿过力/力矩加载臂的通孔B501、标定支架的通孔A210,绕过上滑轮组件3中的滑轮C308并竖直向下延伸,调节调整螺栓B403使力/力矩加载臂5至上滑轮组件3之间的钢丝绳位置水平;取另一钢丝绳,将钢丝绳一端连接于下螺栓A506并将螺母旋入拧紧,将钢丝绳紧固,穿过力/力矩加载臂的凹槽C509、标定支架的长圆孔207,绕过下滑轮组件4中的滑轮D407并竖直向下延伸,调节调整螺栓B403使力/力矩加载臂5至下滑轮组件4之间的钢丝绳位置水平;在两条钢丝绳竖直方向末端同时加载等重量砝码,依次改变砝码重量,记录加载力值与六维力/力矩传感器的六通道输出值,完成My正、负方向的力矩加载及数据采集;2.2、将传感器顺时针旋转90°安装,重复步骤2.1,完成Mx正、负方向的力矩加载及数据采集;2.3、在Z向力矩标定模式下,将钢丝绳一端连接于上螺栓B902并将螺母旋入拧紧,将钢丝绳紧固,穿过标定支架的通孔A210,绕过上滑轮组件3中的滑轮C308并竖直向下延伸,调节调整螺栓B403使Z向力矩加载臂9至上滑轮组件3之间的钢丝绳位置水平;取另一钢丝绳,将钢丝绳一端连接于下螺栓B903并将螺母旋入拧紧,将钢丝绳紧固,穿过标定支架长圆孔207,绕过下滑轮组件4中的滑轮D407并竖直向下延伸,调节调整螺栓B403使Z向力矩加载臂9至下滑轮组件4之间的钢丝绳位置水平;在两本文档来自技高网...

【技术保护点】
1.一种双模式六维力/力矩传感器标定装置,其特征在于:双模式为一般标定模式和Z向力矩标定模式;包括标定底座(1)、标定支架(2)、上滑轮组件(3)、下滑轮组件(4)、力/力矩加载臂(5),所述标定支架(2)安装在标定底座(1)上,标定支架(2)两侧分别安装上滑轮组件(3)、下滑轮组件(4),标定支架(2)的横梁中部安装一个滑轮A(6);传感器(7)竖直安装在标定底座(1)上、力/力矩加载臂(5)通过螺栓连接在传感器(7)上构成所述的一般标定模式;或者通过U型支架(8)、Z向力矩加载臂(9)水平安装在标定支架(2)上构成所述的Z向力矩标定模式。

【技术特征摘要】
1.一种双模式六维力/力矩传感器标定装置,其特征在于:双模式为一般标定模式和Z向力矩标定模式;包括标定底座(1)、标定支架(2)、上滑轮组件(3)、下滑轮组件(4)、力/力矩加载臂(5),所述标定支架(2)安装在标定底座(1)上,标定支架(2)两侧分别安装上滑轮组件(3)、下滑轮组件(4),标定支架(2)的横梁中部安装一个滑轮A(6);传感器(7)竖直安装在标定底座(1)上、力/力矩加载臂(5)通过螺栓连接在传感器(7)上构成所述的一般标定模式;或者通过U型支架(8)、Z向力矩加载臂(9)水平安装在标定支架(2)上构成所述的Z向力矩标定模式。2.根据权利要求1所述的双模式六维力/力矩传感器标定装置,其特征在于:所述的标定底座(1)设置有传感器连接孔A(101)、标定支架连接孔(102);标定底座(1)底面设置U型槽(103),U型槽内设螺纹孔,为调整螺栓B(403)预留安装空间,通过调整螺栓B(403)与螺纹孔的相对运动实现对下滑轮组件(4)的位置调整;所述的标定支架(2)上设有U型支架连接孔(201)、标定支架安装孔(202)、上滑轮组件调整孔(203)、下滑轮组件调整孔(205)、长圆孔(207)、方形通孔(209)、通孔A(210)及横梁滑轮安装孔(212),其中横梁滑轮安装孔(212)为滑轮A(6)提供支撑,并使力/力矩加载臂(5)与滑轮(6)间的钢丝绳与力/力矩加载臂(5)的轴线重合。3.根据权利要求1所述的双模式六维力/力矩传感器标定装置,其特征在于:所述的上滑轮组件(3)包括调整螺栓A(303)、调整架A(305)、滑轮B(307)、滑轮C(308),所述上滑轮组件(3)通过调整螺栓A(303)与调整架(305)的相对运动,带动上滑轮组件(3)整体在上滑轮组件调整孔(203)内滑动,实现滑轮B(307)、滑轮C(308)位置的调整;所述的滑轮组件(4)包括调整螺栓B(403)、调整架B(405)、滑轮D(407),所述下滑轮组件(4)通过调整螺栓B(403)与调整架B(405)的相对运动,带动下滑轮组件(4)整体在下滑轮组件调整孔(205)内滑动,实现滑轮D(407)位置的调整。4.根据权利要求1所述的双模式六维力/力矩传感器标定装置,其特征在于:所述的力/力矩加载臂(5)包括四个通孔B(501)、上螺栓A(505)、下螺栓A(506)、凹槽A(507)、凹槽B(508)、凹槽C(509)、凹槽D(510)及传感器连接孔B(511),其中上螺栓A(505)、下螺栓A(506)实现钢丝绳一端的紧固。5.根据权利要求1所述的双模式六维力/力矩传感器标定装置,其特征在于:所述的U型支架(8)整体为U型,为传感器(7)的安装预留空间,并实现Z向力矩的加载;通过U型支架连接孔(201)安装于标定支架(2)中部,传感器(7)水平安装于U型支架(8)内部。6.根据权利要求1所述的双模式六维力/力矩传感器标定装置,其特征在于:所述的Z向力矩加载臂(9)包括连接孔(901)、上螺栓B(902)、下螺栓B(903),Z向力矩加载臂(9)安装于传感器(7)的受力端,且处于上滑轮组件(3)、下滑轮组件(4)的滑轮滑道切线构成的平面内,上螺栓B(902)、下螺栓B(903)实现钢丝绳一端的紧固。7.一种双模式六维力/力矩传感器标定方法,其特征在于:包括如下步骤:步骤(1)、力值加载及数据采集;步骤(2)、力矩加载及数据采集;步骤(3)、计算标定矩阵。8.根据权利要求7所述的双模式六维力/力矩传感器标定方法,其特征在于:步骤(1)所述的力值加载及数据采集是:1.1、在一般标定模式下,将钢丝绳一端连接于下螺A(506)并将螺母旋入拧紧,将钢丝绳紧固,穿过力/力矩加载臂的凹槽A(507)、标定支架的长圆孔(207),绕过下滑轮组件(4)中的滑轮D(407)并竖直向下延伸,调节调整...

【专利技术属性】
技术研发人员:张世忠李文博霍占伟刘泽洋杨立国黄加创赵运来赵宏伟郑小石王岩秦峰李磊刘思含
申请(专利权)人:吉林大学
类型:发明
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1