当前位置: 首页 > 专利查询>浙江大学专利>正文

参数自整定的MIMO异因子全格式无模型控制方法技术

技术编号:20864301 阅读:20 留言:0更新日期:2019-04-17 08:57
本发明专利技术公开了一种参数自整定的MIMO异因子全格式无模型控制方法,针对现有的采用同因子结构的MIMO全格式无模型控制方法的局限性,也就是:在k时刻针对控制输入向量中的不同控制输入只能采用相同数值的惩罚因子与相同数值的步长因子的局限性,提出了一种采用异因子结构的MIMO全格式无模型控制方法,在k时刻针对控制输入向量中的不同控制输入可采用不同数值的惩罚因子和/或不同数值的步长因子,能够解决强非线性MIMO系统等复杂对象中存在的各个控制通道特性各异的控制难题,同时提出了参数自整定的方法以有效克服惩罚因子和步长因子需要费时费力进行整定的难题。与现有的控制方法相比,本发明专利技术具有更高的控制精度、更好的稳定性与更广的适用性。

【技术实现步骤摘要】
参数自整定的MIMO异因子全格式无模型控制方法
本专利技术属于自动化控制领域,尤其是涉及一种参数自整定的MIMO异因子全格式无模型控制方法。
技术介绍
炼油、石化、化工、制药、食品、造纸、水处理、火电、冶金、水泥、橡胶、机械、电气等行业的大多数被控对象,包括反应器、精馏塔、机器、设备、装置、生产线、车间、工厂,本质上都是MIMO(MultipleInputandMultipleOutput,多输入多输出)系统。实现对MIMO系统的高精度、高稳定、高适用性控制,对工业的节能降耗、提质增效具有重要意义。然而,MIMO系统的控制难题,尤其是强非线性MIMO系统的控制难题,一直以来都是自动化控制领域所面临的重大挑战。MIMO系统的现有控制方法中包括MIMO全格式无模型控制方法。MIMO全格式无模型控制方法是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MIMO被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,具有良好的应用前景。MIMO全格式无模型控制方法的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第116页)中提出,其控制算法如下:其中,u(k)为k时刻控制输入向量,u(k)=[u1(k),…,um(k)]T,m为控制输入总个数(m为大于1的正整数),Δu(k)=u(k)-u(k-1);e(k)为k时刻误差向量,e(k)=[e1(k),…,en(k)]T,n为输出总个数(n为正整数);Δy(k)=y(k)-y(k-1),y(k)为k时刻输出实际值向量,y(k)=[y1(k),…,yn(k)]T;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块(p为正整数,1≤p≤Ly+Lu),||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;λ为惩罚因子;ρ1,…,ρLy+Lu为步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数。上述现有的MIMO全格式无模型控制方法,采用了同因子结构,也就是说:在k时刻,针对控制输入向量u(k)中的不同控制输入u1(k),…,um(k),只能采用相同数值的惩罚因子λ与相同数值的步长因子ρ1,…,相同数值的步长因子ρLy+Lu。当现有的MIMO同因子全格式无模型控制方法应用于强非线性MIMO系统等复杂对象时,由于控制通道特性各异,往往难以实现理想的控制效果,制约了MIMO全格式无模型控制方法的推广应用。为此,为了打破现有的MIMO同因子全格式无模型控制方法的应用瓶颈,本专利技术提出了一种参数自整定的MIMO异因子全格式无模型控制方法。
技术实现思路
为了解决
技术介绍
中存在的问题,本专利技术的目的在于,提供一种参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:当被控对象为MIMO(MultipleInputandMultipleOutput,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:如果控制输入线性化长度常数Lu>1,则:如果控制输入线性化长度常数Lu=1,则:其中,k为正整数;m为所述MIMO系统控制输入总个数,m为大于1的正整数;n为所述MIMO系统输出总个数,n为正整数;i表示所述MIMO系统控制输入总个数中的第i个,i为正整数,1≤i≤m;j表示所述MIMO系统输出总个数中的第j个,j为正整数,1≤j≤n;ui(k)为k时刻第i个控制输入;Δuiu(k)=uiu(k)-uiu(k-1),iu为正整数;ej(k)为k时刻第j个误差,即k时刻误差向量e(k)=[e1(k),…,en(k)]T的第j个元素;Δyjy(k)=yjy(k)-yjy(k-1),yjy(k)为k时刻第jy个输出实际值,jy为正整数;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块,φj,i,p(k)为矩阵Φp(k)的第j行第i列元素,||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;p为正整数,1≤p≤Ly+Lu;λi为第i个控制输入的惩罚因子;ρi,p为第i个控制输入的第p个步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数;针对MIMO系统,所述MIMO异因子全格式无模型控制方法将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T;所述MIMO异因子全格式无模型控制方法具有异因子特征;所述异因子特征是指针对正整数区间[1,m]内任意两个互不相等的正整数i与x,在采用所述控制方法对MIMO系统进行控制期间,至少存在一个时刻,使得如下(Ly+Lu+1)个不等式中至少有一个不等式成立:λi≠λx;ρi,1≠ρx,1;…;ρi,Ly+Lu≠ρx,Ly+Lu在采用所述控制方法对MIMO系统进行控制期间,对计算k时刻控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数进行参数自整定;所述待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合。所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数;在更新所述神经网络的隐含层权系数、输出层权系数时,使用所述控制输入向量u(k)=[u1(k),…,um(k)]T分别针对各自数学公式中的待整定参数在k时刻的梯度;所述控制输入向量u(k)=[u1(k),…,um(k)]T中的ui(k)(i=1,…,m)针对所述ui(k)的数学公式中的待整定参数在k时刻的梯度,由ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数组成;所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,采用如下的数学公式进行计算:当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu=1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu>1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且1≤p≤Ly时,ui(k)针对所述步长因子ρi,p在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,Ly+1时,ui(k)针对所述步长因子ρi,Ly+1在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且Ly+2≤p≤Ly+Lu且Lu>1时,ui(k)针对所述步长因子ρju,i在k时刻的偏导数为:计算得到的所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,全部放入集合{ui(k)的梯度};针对MIMO系统,将i的取值遍历正整数区间[1,m]内的所有值,分别得到集合{u1(k)的梯度},…,集合{um(k)的梯度},并全部放入集合{梯度集合},所述集合{梯度集合}为包含全部{{u1(k)的梯本文档来自技高网
...

【技术保护点】
1.参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:当被控对象为MIMO(Multiple Input and Multiple Output,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:如果控制输入线性化长度常数Lu>1,则:

【技术特征摘要】
1.参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:当被控对象为MIMO(MultipleInputandMultipleOutput,多输入多输出)系统时,所述MIMO异因子全格式无模型控制方法计算k时刻第i个控制输入ui(k)的数学公式如下:如果控制输入线性化长度常数Lu>1,则:如果控制输入线性化长度常数Lu=1,则:其中,k为正整数;m为所述MIMO系统控制输入总个数,m为大于1的正整数;n为所述MIMO系统输出总个数,n为正整数;i表示所述MIMO系统控制输入总个数中的第i个,i为正整数,1≤i≤m;j表示所述MIMO系统输出总个数中的第j个,j为正整数,1≤j≤n;ui(k)为k时刻第i个控制输入;Δuiu(k)=uiu(k)-uiu(k-1),iu为正整数;ej(k)为k时刻第j个误差,即k时刻误差向量e(k)=[e1(k),…,en(k)]T的第j个元素;Δyjy(k)=yjy(k)-yjy(k-1),yjy(k)为k时刻第jy个输出实际值,jy为正整数;Φ(k)为k时刻MIMO系统伪分块雅克比矩阵估计值,Φp(k)为Φ(k)的第p块,φj,i,p(k)为矩阵Φp(k)的第j行第i列元素,||ΦLy+1(k)||为矩阵ΦLy+1(k)的2范数;p为正整数,1≤p≤Ly+Lu;λi为第i个控制输入的惩罚因子;ρi,p为第i个控制输入的第p个步长因子;Ly为控制输出线性化长度常数,Ly为正整数;Lu为控制输入线性化长度常数,Lu为正整数;针对MIMO系统,所述MIMO异因子全格式无模型控制方法将i的取值遍历正整数区间[1,m]内的所有值,即可计算得到k时刻控制输入向量u(k)=[u1(k),…,um(k)]T;所述MIMO异因子全格式无模型控制方法具有异因子特征;所述异因子特征是指针对正整数区间[1,m]内任意两个互不相等的正整数i与x,在采用所述控制方法对MIMO系统进行控制期间,至少存在一个时刻,使得如下(Ly+Lu+1)个不等式中至少有一个不等式成立:λi≠λx;ρi,1≠ρx,1;…;ρi,Ly+Lu≠ρx,Ly+Lu在采用所述控制方法对MIMO系统进行控制期间,对计算k时刻控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数进行参数自整定;所述待整定参数包含惩罚因子λi、步长因子ρi,1,…,ρi,Ly+Lu(i=1,…,m)的任意之一或任意种组合。2.根据权利要求1所述的参数自整定的MIMO异因子全格式无模型控制方法,其特征在于:所述参数自整定采用神经网络计算所述控制输入向量u(k)=[u1(k),…,um(k)]T的数学公式中的待整定参数;在更新所述神经网络的隐含层权系数、输出层权系数时,使用所述控制输入向量u(k)=[u1(k),…,um(k)]T分别针对各自数学公式中的待整定参数在k时刻的梯度;所述控制输入向量u(k)=[u1(k),…,um(k)]T中的ui(k)(i=1,…,m)针对所述ui(k)的数学公式中的待整定参数在k时刻的梯度,由ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数组成;所述ui(k)分别针对所述ui(k)的数学公式中的各个待整定参数在k时刻的偏导数,采用如下的数学公式进行计算:当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu=1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含惩罚因子λi且Lu>1时,ui(k)针对所述惩罚因子λi在k时刻的偏导数为:当所述ui(k)的数学公式中的待整定参数包含步长因子ρi,p且1≤p≤Ly时,ui(k)针对所述步长因子ρi,p在...

【专利技术属性】
技术研发人员:卢建刚陈晨
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1