一种电池充电方法和装置制造方法及图纸

技术编号:20800361 阅读:24 留言:0更新日期:2019-04-06 14:07
一种电池充电方法,该方法先获取电池参数,所述电池参数包括电池的电极参数,再根据所述电池参数输入常微分方程所表示的电池模型,获取所述电池n次循环下的安全充电边界值,其中所述参数还包括电池的结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的一个或多个,所述安全充电边界值是包括不同荷电状态SOC和不同温度下所述电池不发生析锂的最大充电电流,所述n大于等于2小于等于N,N为所述电池的循环寿命,所述n次循环是指0至N次循环中选取的n次循环;最后根据所述电池的当前循环次数、当前温度、当前的SOC以及所述安全充电边界值,获得所述电池的当前循环次数以及当前的SOC下的最大安全充电电流值。

A Battery Charging Method and Device

A battery charging method is presented. The battery parameters include the electrode parameters of the battery. Then, according to the battery parameters, the battery model expressed by ordinary differential equation is input to obtain the safe charging boundary values of the battery under N cycles. The parameters also include the structure parameters, manufacturing parameters, electrical parameters, electrolyte parameters and separation of the battery. One or more of the membrane parameters and thermophysical parameters, the safe charging boundary value is the maximum charging current that does not occur lithium evolution in the battery under different charging state SOC and different temperatures. The n greater than or equal to 2 is less than or equal to N, and N is the cycle life of the battery. The N cycles refer to the N cycles selected from 0 to N cycles. Finally, according to the current cycle of the battery. The number of cycles, the current temperature, the current SOC and the safe charging boundary value are used to obtain the current cycle number of the battery and the maximum safe charging current value under the current SOC.

【技术实现步骤摘要】
一种电池充电方法和装置
本申请涉及电池管理领域,尤其涉及一种电池充电方法和装置。
技术介绍
当前锂离子电池因其能量密度高,循环寿命长,自放电率低等优点成为目前各种移动设备或终端的主要储能元件,同时也作为电动汽车的主要驱动电源。然而,锂离子电池的充电速度较慢,一次充电需要耗费多达数个小时的时间,随着消费者对于电池续航能力的迫切要求,锂离子电池的能量密度不断提高,伴随而来的充电时间也在不断增加,这给手机等移动终端以及电动汽车的使用带来了严重的不便。鉴于此,当前的移动终端或设备的锂离子电池的快充性能已成为这些移动终端或设备的用户的需求点,同时也是产品制造商的重要关注点之一。目前,常见的锂离子电池广泛使用恒流恒压(CC-CV)充电方法。首先,使用恒定的电流(CC)对电池进行充电,当电池电压达到充电截止电压时,使用恒压充电(CV),充电电流逐渐减小,当电池充电电流减小到某一值时,充电结束。实现锂离子电池的快速充电,究其根本在于增大充电电流,然而电池在充电时的发热量与充电电流近似成平方关系,造成电池快充时大量发热,推广难度大。同时,温度越高,副反应越多,锂离子电池的循环寿命和安全性越差。随着锂离子电池充电电流的增大,同时会增加电池的极化,造成负极表面出现析锂,对电池的性能和寿命造成影响,也容易因为短路问题引发安全隐患。因此,移动终端以及设备的制造追求快速充电而不断加大充电电流的同时,应当考虑过大电流充电对电池的性能、寿命以及安全等带来的影响。
技术实现思路
本申请实施例提供了一种电池充电方法和终端,用于在兼顾电池的发热、寿命和安全的前提下,建立电池安全充电边界,并在安全充电边界内获取最大充电电流。本专利技术实施例一方面提供一种电池充电方法,该方法先获取电池参数,所述电池参数包括电池的电极参数,再根据所述电池参数输入常微分方程所表示的电池模型,获取所述电池n次循环下的安全充电边界值,其中所述参数还包括电池的结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的一个或多个,所述安全充电边界值是包括不同荷电状态SOC和不同温度下所述电池不发生析锂的最大充电电流,所述n大于等于2小于等于N,N为所述电池的循环寿命,所述n次循环是指0至N次循环中选取的n次循环;最后根据所述电池的当前循环次数、当前温度、当前的SOC以及所述安全充电边界值,获得所述电池的当前循环次数以及当前的SOC下的最大安全充电电流值,所述最大安全充电电流值是指所述电池的当前循环次数以及当前的SOC下不发生析锂的最大充电电流值。本专利技术实施例实时监测电池的当前温度、荷电状态SOC及循环次数等状态参数,根据上述状态参数从安全充电边界数据表中提取相应的边界电流,根据该安全边界电流值选择适当的充电制度进行充电,可解决电池快充与电池老化及安全之间的矛盾关系,在确保电池安全的前提下,延缓电池老化,提升快充速度。此外,上述所有的电池参数可以都作为所述锂离子电池模型的输入,以更全面的考虑电池的状态,而获得更为准确的安全边界以及安全充电电流。本专利技术实施例一方面的一种可能的实现方式中,将所述n次循环中的k次循环的每一次循环的所述电池参数输入常微分方程表示的锂离子电池模型,获得所述电池在所述k次循环中每一次循环的安全边界值,所述电池在所述n次循环中每次循环的安全边界值构成安全边界表,所述k大于等于2小于等于n;根据所述电池在所述k次循环中的安全边界值构建函数式,根据所述函数式获得所述电池在所述n次循环中的除所述k次循环外的其它每一次循环的安全边界值,从而获得所述安全边界表。这样不需要将每一次的电池循环的数据或参数输入到所述锂电池模型中来获得每一次循环下各电池温度时的最大安全充电电流值,而是通过部分的循环次数下的结果去获得所有循环次数下的结果,可以大大节约获取所有安全充电边界值的步骤以及工作量,有效简化该实施方式的操作流程。例如,可以通过根据所述电池在所述k次循环中的安全边界值,通过插值法获得所述电池线性衰减函数Isat(X,SOC,T)=a·X+b,再根据所述电池的线性衰减函数获得所述电池在所述n次循环中的除所述k次循环外的其它每一次循环的安全边界值,其中系数a和b通过所述插值法算出,所述X为所述电池循环次数,所述Isat为不发生析锂的最大充电电流值,所述T为所述电池的温度。本专利技术实施例的另一方面提供一种终端,包括电池、充电电路以及电池管理单元,所述电池管理单元用于控制所述充电电路对所述电池进行充电,所述电池管理单元包括状态获取模块、数据处理模块和存储模块。所述数据存储模块用于存储所述电池参数以及所述安全充电边界值组成的安全充电边界表。所述状态获取模块用于获取所诉电池的电池参数、所述电池的当前循环次数、所述电池的循环寿命以及所述电池的荷电状态SOC,所述参数还包括电池的结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的一个或多个。所述数据处理模块用于根据所述电池参数,获取所述电池n次循环下的安全充电边界值,所述安全充电边界值包括各不同SOC和不同温度下所述电池不发生析锂的最大充电电流,所述n大于等于02小于等于N,N为所述电池的循环寿命,所述n次循环是指0至N次循环中选取的n次循环,再根据所述电池的当前循环次数、当前温度、当前的SOC以及所述安全充电边界值获得所述电池的当前循环次数以及当前的SOC下的最大安全充电电流,所述最大安全充电电流值是指所述电池的当前循环次数以及当前的SOC下不发生析锂的最大充电电流值。所述状态获取模块进一步可以包括荷电状态计算模块、老化状态计算模块以及状态监测模块,其中所述状态检测模块用于检测所述电池及终端设备的电池电压、电池充放电电流、设备温度参数信号,并可以将检测结果存放于所述存储模块,以供数据处理模块读取;所述荷电状态计算模块用于通过SOC计算芯片估算当前电池的SOC,并将结果存放于所述存储模块,以供数据处理模块读取;所述老化状态确认模块用于获取电池当前的循环数,并将结果存放于所述数据存储模块,以供所述数据处理模块读取。附图说明图1是本专利技术实施例的应用场景图。图2是本专利技术实施例中安全充电边界的示意图。图3是本专利技术一实施例中的电池充电方法流程图。图4是本专利技术实施例中的当电池衰减模式为非线性衰减时,计算所述电池各循环次数下的安全充电边界值的操作示意图。图5是本专利技术实施例中终端的电池管理单元的一结构示意图。图6是本专利技术实施例中终端的电池管理单元的另一结构示意图。具体实施方式本申请实施例提供了一种电池充电方法和装置,用于根据精确度更高的电池模型估计电池荷电状态,提高了电池荷电状态的估计值的准确性。为了使本
的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行描述。本专利技术实施例中的电池充电方法主要适用于各种具有充电电池的电子产品,尤其适用于一些便携设备,如手机、平板电脑、笔记本电脑、各种穿戴设备等终端产品。对于此类需要进行充电的终端就需要电池管理单元,以控制电池的充放电,同时能够防止因为过压、过流、过充等情况,否则会因此电池中的电芯损坏,甚至导致电芯爆炸等严重后果。为了便于描述,以下将所有具有充电电池的电子产品称为终端。如图1所示,本专利技术实施例中使用所述电池充电方法的终端包括通过本文档来自技高网
...

【技术保护点】
1.一种电池充电方法,其特征在于,包括:获取电池参数,所述电池参数包括电池的电极参数,所述参数还包括电池的结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的一个或多个;根据所述电池参数,获取所述电池n次循环下的安全充电边界值,所述安全充电边界值是包括不同荷电状态SOC和不同温度下所述电池不发生析锂的最大充电电流,所述n大于等于2小于等于N,N为所述电池的循环寿命,所述n次循环是指0至N次循环中选取的n次循环;根据所述电池的当前循环次数、当前温度、当前的SOC以及所述安全充电边界值,获得所述电池的当前循环次数以及当前的SOC下的最大安全充电电流值,所述最大安全充电电流值是指所述电池的当前循环次数以及当前的SOC下不发生析锂的最大充电电流值。

【技术特征摘要】
1.一种电池充电方法,其特征在于,包括:获取电池参数,所述电池参数包括电池的电极参数,所述参数还包括电池的结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的一个或多个;根据所述电池参数,获取所述电池n次循环下的安全充电边界值,所述安全充电边界值是包括不同荷电状态SOC和不同温度下所述电池不发生析锂的最大充电电流,所述n大于等于2小于等于N,N为所述电池的循环寿命,所述n次循环是指0至N次循环中选取的n次循环;根据所述电池的当前循环次数、当前温度、当前的SOC以及所述安全充电边界值,获得所述电池的当前循环次数以及当前的SOC下的最大安全充电电流值,所述最大安全充电电流值是指所述电池的当前循环次数以及当前的SOC下不发生析锂的最大充电电流值。2.根据权利要求1所述的电池充电方法,其特征在于,根据所述电池参数,获取所述电池在n次循环的安全充电边界值包括:将所述n次循环中的k次循环的每一次循环的所述电池参数输入常微分方程表示的锂离子电池模型,获得所述电池在所述k次循环中每一次循环的安全边界值,所述k大于等于2小于等于n;根据所述电池在所述k次循环中的安全边界值构建函数式,根据所述函数式获得所述电池在所述n次循环中的除所述k次循环外的其它每一次循环的安全边界值。3.根据权利要求2所述的电池充电方法,其特征在于,所述根据所述电池在所述k次循环中的安全边界值构建函数式,根据所述函数式获得所述电池在所述n次循环中的除所述k次循环外的其它每一次循环的安全边界值包括:根据所述电池在所述k次循环中的安全边界值,通过插值法获得所述电池线性衰减函数Isat(X,SOC,T)=a·X+b,再根据所述电池的线性衰减函数获得所述电池在所述n次循环中的除所述k次循环外的其它每一次循环的安全边界值,其中系数a和b通过所述插值法算出,所述X为所述电池循环次数,所述Isat为不发生析锂的最大充电电流值,所述T为所述电池的温度。4.根据权利要求1所述的电池充电方法,其特征在于,根据所述电池参数,获取所述电池在n次循环的安全充电边界值包括:将所述n次循环中的每一次循环的所述电池参数输入常微分方程表示的锂离子电池模型,获得所述电池在所述n次循环中每一次循环的安全边界值,以获得所述安全边界值。5.根据权利要求1至4任一项所述的电池充电方法,其特征在于,所述获取电池参数包括获取所述电极参数、结构参数、制造工艺参数、电学参数、电解液参数、隔膜参数以及热物性参数中的全部电池参数;根据所述全部电池参数,获取所述电池N次循环中每一次循环的安全充电边界值,其中所述N等于n。6.根据权利要求1至4任一项所述的电池充电方法,其特征在于,还包括:根据所述电池的当前循环次数以及安全边界值,获得所述电池的当前循环次数下所述电池的不同SOC以及不同温度下适用的最大充电电流,并确定所述电池的快速充电策略,所述快速充电策略包括在当前充电周期内各个时间段对应的SOC以及适用的最大充电电流。7.一种...

【专利技术属性】
技术研发人员:李良昱李娟王平华曹勇李阳兴
申请(专利权)人:华为技术有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1