一种具有稳定的弱负介电性能的超构复合材料制备方法技术

技术编号:20669078 阅读:32 留言:0更新日期:2019-03-27 15:31
本发明专利技术涉及一种负介电材料的制备方法,特别涉及一种具有稳定的弱负介电性能的超构复合材料制备方法,负介电性能对材料组成变化的敏感度低,该发明专利技术可应用于电磁屏蔽、吸波、高容量电容器领域。上述负介电材料的制备方法,包括:步骤1:利用正硅酸四乙酯制备不同粒径的SiO2微球;步骤2:炭的前驱体溶液的配置;步骤3:复合材料前驱体的成型;步骤4:碳化前驱体复合材料。本发明专利技术所制备的复合材料,其负介电常数在‑400至0范围,由于热解碳的特殊多孔结构,弱负介电性能对碳含量的变化不敏感,性能稳定;通过调控二氧化硅微球的尺寸、前驱体溶液的浓度和碳化温度可方便地调控复合材料的介电性能;复合材料温度稳定性高,使用的温度区间大,可应用于高温电磁领域。

【技术实现步骤摘要】
一种具有稳定的弱负介电性能的超构复合材料制备方法
本专利技术涉及一种负介电材料的制备方法,特别涉及一种具有稳定的弱负介电性能的超构复合材料制备方法,负介电性能对材料组成变化的敏感度低,该专利技术可应用于电磁屏蔽、吸波、高容量电容器领域。
技术介绍
负电磁参数材料首次在超材料中提出,且作为实现负折射率的关键结构基元。自此之后,负电磁参数材料由于其新颖的电磁性能在生物监测、微波隧穿、介电增强和晶体管领域均受到广泛关注。超材料的新颖性能来源于金属单元的几何参数和周期排列的方式,并非来自于其组成材料的本征属性。从材料组成和微观结构的角度出发,负电磁参数也可以在逾渗复合材料中实现,此类复合材料中无周期结构。此类复合材料也称为超构材料或者本征超材料。负介电常数作为负电磁型参数的一种,之前的研究大多集中在金属复合材料上,即金属-陶瓷复合材料和金属-聚合物复合材料上。当负介电材料实际应用时,往往对负介电常数的数值有特殊要求。例如,当作为完美成像系统的等离激元零件时,负介电常数往往需要具有较小的数值,在-1左右;当应用于射频段时,尤其是吸波领域,往往要求负介电常数和负磁导率满足阻抗匹配。理论上,负磁导率可以通过LC谐振或磁共振实现。研究结果表明,负磁导率是铁磁材料的本征属性,且可通过外加磁场进行调控,负磁导率往往具有较小的绝对值,小于两个数量级。然而,在射频段,金属复合材料的介电常数为负值时往往具有较大的绝对值,往往在5-6个数量级之间。负介电常数和负磁导率数值的差距导致阻抗不匹配,此类材料难以实际应用。因此,具有较小绝对值的负介电常数是实际应用中更加需要的,我们将此类负介电性能称为弱负介电性能。同时,金属复合材料的负介电性能往往伴随着较高的损耗。为了解决此类问题,碳复合材料亦应用到负介电性能的实现。与金属复合材料相比,碳复合材料的介电常数的绝对值往往较小,具有较好的阻抗匹配特性,这归因于碳材料低的等效电子浓度。然而,无论是金属复合材料还是碳复合材料,负介电性能均是不稳定的,也就是说,负介电常数的数值随着导电填料的含量变化而剧烈变化,这归因于逾渗的特性——在逾渗阈值附近,复合材料的性能和微观结构对填料含量非常敏感,即随着填料含量的变化而剧烈变化。
技术实现思路
为了实现具有稳定弱负介电性能的复合材料,本专利技术提供了一种负介电材料的制备方法。本专利技术提供的金属方案如下:步骤1:制备不同粒径的SiO2微球。A液:25ml去离子水+20ml氨水+80ml无水乙醇;B液:80ml无水乙醇+40ml正硅酸乙酯。上述提供的A、B液仅为比例的参考值,具体总量可根据对产量的要求而调整。设定水浴温度分别为20-50℃之间,在机械力搅拌下,将B液匀速滴入(滴入速率为40-120mL/h)A液中(得乳白色的SiO2微球悬浊液)。滴入完毕后保持机械力搅拌和水浴温度3-9小时。分离并清洗微球:将上反应所得的悬浊液于离心机中做离心处理分离出SiO2微球,并用去离子水反复清洗至粉体的悬浊液PH=7;分离过程亦可采用过滤的方式,过滤工艺成本低,适用于批量化生产。步骤2:前驱体溶液的配置。称量一定量的蔗糖(或葡萄糖)以及一定量的聚乙烯醇(PVA),配置蔗糖浓度为0.3-1g/mL且PVA浓度为0.005-0.03g/mL的溶液。此过程可根据浓度的不同,选择适宜的加热温度以加快蔗糖(或葡萄糖)、PVA的溶解。步骤3:复合材料前驱体的成型。称量适量步骤1中所得的二氧化硅微球(根据所需复合材料的尺寸大小),分散于步骤2中的溶液中,超声3-6小时,以达到均匀分散的效果为准。本专利技术提供两种成型手段。第一种,对于所需产品尺寸较小,可使用离心法成型。将一定形状的模具置于离心管底部,将步骤3的分散液倒入离心管。离心机以水平转子离心机为最佳,以下是以湘仪TDZ5-WS设备为标准给出的工艺参数:转速选择2000r/min-4800r/min,离心时间10min-30min。第二种,对于所需产品尺寸较大,无法使用离心法成型的,可使用重力沉降法成型。将模具放于盛有步骤3分散液的容器底部,将容器放于较小振动的环境中,直至微球全部沉降为止。此过程所需时间较长,为了缩短时间,容器所处环境的温度可提高至60-80℃之间。步骤4:碳化前驱体复合材料。将步骤3所获得的复合材料置于气氛炉中碳化,碳化最佳制度为:从室温以5℃/min的速度升温至200℃,保温30min,以5℃/min的速度升温至400℃,保温30min,再以5℃/min的速度升温至最终的碳化温度,保温120min,最终碳化温度在700℃-1200℃之间,根据所需负介电性能决定,气氛为氮气气氛或者惰性气氛。本专利技术提供了一种具有稳定的弱负介电性能的超构复合材料制备方法,具有以下有益效果:1)本专利技术由于热解碳的特殊多孔结构,弱负介电性能对碳含量的变化不敏感,性能稳定;2)通过调控二氧化硅微球的尺寸、前驱体溶液的浓度和碳化温度可方便地调控复合材料的介电性能;3)本专利技术制备的是碳-陶瓷复合材料,其温度稳定性高,其产品所使用的温度区间大,可应用于高温电磁领域。附图说明图1为实施例中所用的二氧化硅微球的SEM图;图2为本专利技术实施例1中复合材料的SEM图。本文档来自技高网
...

【技术保护点】
1.本专利技术提供了一种具有稳定的弱负介电性能的超构复合材料制备方法,具体物质用量及实验过程参见下述实施例。

【技术特征摘要】
1.本发明提供了一种具有稳定的弱负介电性能的超构复合材料制备方法,具体物质用量及实验过程参见下述实施例。2.实施例1:为了获得在100MHz下复合材料的介电常数为-100,其具体的工艺为:步骤1:制备不同粒径的SiO2微球;A液:25ml去离子水+20ml氨水+80ml无水乙醇;B液:80ml无水乙醇+40ml正硅酸乙酯;水浴温度为40℃之间,在机械力搅拌下,将B液匀速滴入(滴入速率为80mL/h)A液中;保持机械力搅拌和水浴温度6小时;将上反应所得的悬浊液于离心机中做离心处理分离出SiO2微球,并用去离子水反复清洗至粉体的悬浊液PH=7。3.步骤2:前驱体溶液的配置,称量一定量的蔗糖以及一定量的PVA,配置蔗糖浓度为0.58g/mL且PVA浓度为0.01g/mL的溶液,选用磁力搅拌,于90℃下溶解。4.步骤3:复合材料前驱体的成型,称量二氧化硅微球1.5克,分散于步骤2中的溶液50mL中,超声6小时;将模具(直径15mm,厚度3mm)置于50mL离心管底部,将分散液倒入离心管;离心参数为,转速4800r/min,离心时间20min。5.步骤4:碳化前驱体复合材料,将步骤3所获得的复合材料置于气氛炉中碳化,碳化制度为:从室温以5℃/min的速度升温至200℃,保温30min,以5℃/min的速度升温至400℃,保温30min,再以5℃/min的速度升温至800℃,保温120min,气氛为氮气气氛或者惰性气氛。6.实施例2:为了获得在100MHz下复合材料的介电常数为-300,其具体的工艺为:步骤1:制备不同粒径的SiO2微球,A液:25ml去离子水+20ml氨水+80ml无水乙醇;B液:80ml无水乙醇+40ml正硅酸乙酯;水浴温度为40℃之间,在机械力搅拌下,将B液匀速滴入(滴入速率为80mL/h)A液中;保持机械力搅拌和水浴温度6小时;将上反应所得的悬浊液于离心机中做离心处理分离出SiO2微球,并用去离子水反复清洗至粉体的悬浊液PH=7。7.步骤2:前驱体溶液的配置,称量一定量的蔗糖以及一定量的PVA,配置蔗糖浓度为0.67g/mL且PVA浓度为0.01g/mL的溶液,选用磁力搅拌,于90℃下溶解;步骤3:...

【专利技术属性】
技术研发人员:解培涛范润华刘峣张子栋范润德
申请(专利权)人:德州迈特新材料研究中心
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1