一种光谱水质COD、浊度检测方法技术

技术编号:20565598 阅读:33 留言:0更新日期:2019-03-14 08:22
本发明专利技术公开了一种光谱水质COD、浊度检测方法,包括:(1)获取若干仅有浊度影响的光谱特征曲线,经过预处理后进行拟合,得到浊度相关性模型F1;(2)获取若干仅有浊度与COD影响的光谱特征曲线,经过预处理后,划分成浊度为不同值时的光谱波段数据集合,并对每个集合分别进行拟合,从而得到浊度为不同值时的COD相关性模型,再将每个COD相关模型和对应的浊度进行拟合,从而得到关联浊度和COD相关性模型F2;(3)根据待检测水样的光谱特征曲线,采用浊度相关性模型F1计算得到浊度值,并基于浊度采用相关性模型F2计算得到COD值。本发明专利技术可以快速有效的分析出被监测水样中的COD与浊度成分。

A Method for Detecting COD and Turbidity of Spectral Water Quality

The invention discloses a method for detecting COD and turbidity of spectral water quality, which includes: (1) obtaining several spectral characteristic curves with only turbidity effect, fitting them after pretreatment, and obtaining turbidity correlation model F1; (2) obtaining several spectral characteristic curves with only turbidity and COD effect, after pretreatment, dividing them into spectral band data sets with different turbidity values, and for each of them The COD correlation model with different turbidity values can be obtained by fitting each set separately, and then each COD correlation model and corresponding turbidity can be fitted to obtain the correlation turbidity and COD correlation model F2; (3) According to the spectral characteristic curve of the water samples to be detected, the turbidity correlation model F1 is used to calculate the turbidity value, and the correlation model F2 is used to calculate the C based on turbidity. OD value. The method can quickly and effectively analyze COD and turbidity components in monitored water samples.

【技术实现步骤摘要】
一种光谱水质COD、浊度检测方法
本专利技术涉及水质检测,尤其涉及一种光谱水质COD、浊度检测方法。
技术介绍
饮水安全问题直接关系到广大人民群众的健康,积极探索采用先进可行的监测技术与方法,实时掌握重要饮用水水源地水质变化情况,加强突发水污染事件水质预警和应急处理能力是十分必要和迫切的。国家水资源监控能力建设2012-2014年项目(以下简称一期项目)已于2015年完成全部建设内容。一期项目完成后,在填补我国水资源监控手段缺乏、改善水资源管理基础设施薄弱状况、提高水资源源管理信息化永平等方面发挥了重要作用。通过一期项目建设基本实现了列入《全国重要饮用水水源地名录》(水资源函[2011]109号)的重要地表水水源地水质在线监测全覆盖。近年来,我国水质相关指标仍然使用化学法,虽然测量较为准确,但是耗时长,所需化学试剂多,操作复杂,稳定性差,二次污染严重,因此光谱法应运而生,其监测周期短,速度快,是在线监测的必备手段。
技术实现思路
专利技术目的:本专利技术针对现有技术存在的问题,提供一种光谱水质COD、浊度检测方法,可以有效的分析出被监测水样中的COD与浊度成分,为光谱法快速准确的解决水质问题提供保证。技术方案:本专利技术所述的光谱水质COD、浊度检测方法包括:(1)获取若干仅有浊度影响的光谱特征曲线,经过预处理后进行拟合,得到浊度相关性模型F1;(2)获取若干仅有浊度与COD影响的光谱特征曲线,经过预处理后,划分成浊度为不同值时的光谱波段数据集合,并对每个集合分别进行拟合,从而得到浊度为不同值时的COD相关性模型,再将每个COD相关模型和对应的浊度进行拟合,从而得到关联浊度和COD相关性模型F2;(3)根据待检测水样的光谱特征曲线,采用浊度相关性模型F1计算得到浊度值,并基于浊度采用相关性模型F2计算得到COD值。进一步的,步骤(1)具体包括:(1.1)获取若干仅有浊度影响的光谱特征曲线,并进行预处理;(1.2)分别将每个预处理后的光谱特征曲线进行拟合,得到多个光谱曲线拟合函数;(1.3)将每个光谱曲线拟合函数的系数与对应的浊度进行拟合,得到每个系数与浊度的关联函数;(1.4)将(1.2)中得到的光谱曲线拟合函数中的系数采用系数与浊度的关联函数替代,从而得到浊度作为参数的光谱曲线拟合函数,作为浊度相关性模型F1。进一步的,步骤(2)具体包括:(2.1)获取若干仅有浊度与COD影响的光谱特征曲线,并进行预处理;(2.2)将预处理后的光谱特征曲线划分成浊度为不同值时的光谱波段数据集合,即每一集合包含了浊度为一定值COD为不同值时的光谱波段数据;(2.3)选取浊度为任一值的光谱波段数据集合,分别将其中每个光谱波段数据进行拟合,得到多个光谱曲线拟合函数;(2.4)将每个光谱曲线拟合函数的系数与对应的COD进行拟合,得到每个系数与COD的关联函数;(2.5)将(2.3)中得到的光谱曲线拟合函数中的系数采用系数与COD的关联函数替代,从而得到COD作为参数的光谱曲线拟合函数,作为浊度为当前值时的COD相关性模型;(2.6)返回执行(2.3),直至所有光谱波段数据集合被处理,得到浊度为不同值时的COD相关性模型;(2.7)提取浊度为不同值时的COD相关性模型的系数,与对应的浊度值进行拟合,得到系数与浊度的关联函数;(2.8)将(2.6)中得到的COD相关性模型中的系数采用系数与浊度的关联函数替代,从而得到浊度和COD作为参数的光谱曲线拟合函数,作为关联浊度和COD相关性模型F2。进一步的,所述预处理具体包括去噪和四角均化法数据修复。所述去噪采用最优小波基进行小波去噪,同时采用全局平滑去噪。所述四角均化法数据修复具体为:选取光谱集合中均匀化光谱误差最小的四个顶点,采用逐一差分的方法对光谱曲线进行数据修复。有益效果:本专利技术与现有技术相比,其显著优点是:本专利技术可以有效的分析出被监测水样中的COD与浊度成分,为光谱法快速准确的解决水质问题提供保证。附图说明图1是本专利技术的一个实施例的流程示意图;图2是所采用的光谱特征曲线图;图3是四角均化法数据修复对比图。具体实施方式本实施例提供了一种光谱水质COD、浊度检测方法,如图1所示,包括以下步骤:(1)获取若干仅有浊度影响的光谱特征曲线,经过预处理后进行拟合,得到浊度相关性模型F1。其中,所述仅有浊度影响的光谱特征曲线如图2所示的单浊度块;所述预处理具体包括去噪和四角均化法数据修复。所述去噪采用最优小波基进行小波去噪,同时采用全局平滑去噪。所述四角均化法数据修复具体为:选取光谱集合中均匀化光谱误差最小的四个顶点,采用逐一差分的方法对光谱曲线进行数据修复。修复后的数据如图3所示。该步骤具体包括:(1.1)获取若干仅有浊度影响的光谱特征曲线,并进行预处理。(1.2)分别将每个预处理后的光谱特征曲线进行拟合,得到多个光谱曲线拟合函数。(1.3)将每个光谱曲线拟合函数的系数与对应的浊度进行拟合,得到每个系数与浊度的关联函数。(1.4)将(1.2)中得到的光谱曲线拟合函数中的系数采用系数与浊度的关联函数替代,从而得到浊度作为参数的光谱曲线拟合函数,作为浊度相关性模型F1。例如,假设预处理后有n条光谱特征曲线,则分别拟合后得到n个光谱曲线拟合函数:假设拟合函数采用一元二次方程,则拟合函数可以变形为:式中,A表示吸光度,为变量,W表示波长,为变量,T表示浊度,t1~tn表示n个具体的浊度值。从n个光谱曲线拟合函数分别提取出系数a、b、c以及对应浊度T进行拟合,即数据{(a1、b1、c1),(t1)}为一组数据,共n组数据,采用这n组数据进行拟合,得到系数a、b、c与对应浊度T的关系函数:将关系函数代入光谱曲线拟合函数,得到浊度作为参数的光谱曲线拟合函数,即A=fa(T)W2+fb(T)W+fc(T)按照参数整理后得到浊度相关性模型F1为:F1:A=f11(T,W)+f12(W)+f13(T)(2)获取若干仅有浊度与COD影响的光谱特征曲线,经过预处理后,划分成浊度为不同值时的光谱波段数据集合,并对每个集合分别进行拟合,从而得到浊度为不同值时的COD相关性模型,再将每个COD相关模型和对应的浊度进行拟合,从而得到关联浊度和COD相关性模型F2。其中,所述仅有浊度与COD影响的光谱特征曲线如图2所示中间部分;所述预处理具体包括去噪和四角均化法数据修复。所述去噪采用最优小波基进行小波去噪,同时采用全局平滑去噪。所述四角均化法数据修复具体为:选取光谱集合中均匀化光谱误差最小的四个顶点,采用逐一差分的方法对光谱曲线进行数据修复。步骤(2)具体包括:(2.1)获取若干仅有浊度与COD影响的光谱特征曲线,并进行预处理;(2.2)将预处理后的光谱特征曲线划分成浊度为不同值时的光谱波段数据集合,即每一集合包含了浊度为一定值COD为不同值时的光谱波段数据;(2.3)选取浊度为任一值的光谱波段数据集合,分别将其中每个光谱波段数据进行拟合,得到多个光谱曲线拟合函数;(2.4)将每个光谱曲线拟合函数的系数与对应的COD进行拟合,得到每个系数与COD的关联函数;(2.5)将(2.3)中得到的光谱曲线拟合函数中的系数采用系数与COD的关联函数替代,从而得到COD作为参数的光谱曲线拟合函数,作为浊度为当前值时的COD相关性模型;(2本文档来自技高网...

【技术保护点】
1.一种光谱水质COD、浊度检测方法,其特征在于包括:(1)获取若干仅有浊度影响的光谱特征曲线,经过预处理后进行拟合,得到浊度相关性模型F1;(2)获取若干仅有浊度与COD影响的光谱特征曲线,经过预处理后,划分成浊度为不同值时的光谱波段数据集合,并对每个集合分别进行拟合,从而得到浊度为不同值时的COD相关性模型,再将每个COD相关模型和对应的浊度进行拟合,从而得到关联浊度和COD相关性模型F2;(3)根据待检测水样的光谱特征曲线,采用浊度相关性模型F1计算得到浊度值,并基于浊度采用相关性模型F2计算得到COD值。

【技术特征摘要】
1.一种光谱水质COD、浊度检测方法,其特征在于包括:(1)获取若干仅有浊度影响的光谱特征曲线,经过预处理后进行拟合,得到浊度相关性模型F1;(2)获取若干仅有浊度与COD影响的光谱特征曲线,经过预处理后,划分成浊度为不同值时的光谱波段数据集合,并对每个集合分别进行拟合,从而得到浊度为不同值时的COD相关性模型,再将每个COD相关模型和对应的浊度进行拟合,从而得到关联浊度和COD相关性模型F2;(3)根据待检测水样的光谱特征曲线,采用浊度相关性模型F1计算得到浊度值,并基于浊度采用相关性模型F2计算得到COD值。2.根据权利要求1所述的光谱水质COD、浊度检测方法,其特征在于:步骤(1)具体包括:(1.1)获取若干仅有浊度影响的光谱特征曲线,并进行预处理;(1.2)分别将每个预处理后的光谱特征曲线进行拟合,得到多个光谱曲线拟合函数;(1.3)将每个光谱曲线拟合函数的系数与对应的浊度进行拟合,得到每个系数与浊度的关联函数;(1.4)将(1.2)中得到的光谱曲线拟合函数中的系数采用系数与浊度的关联函数替代,从而得到浊度作为参数的光谱曲线拟合函数,作为浊度相关性模型F1。3.根据权利要求1所述的光谱水质COD、浊度检测方法,其特征在于:步骤(2)具体包括:(2.1)获取若干仅有浊度与COD影响的光谱特征曲线,并进行预处理;(2.2)将预处理后的光谱特征曲线划分成浊度为不同值时的光谱波段数据集合,即每一集合包...

【专利技术属性】
技术研发人员:张敏吴绍锋蔡鑫李东波
申请(专利权)人:南京波思途智能科技股份有限公司南京波思途电子科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1