【技术实现步骤摘要】
样本图像确定方法和装置、电子设备及存储介质
本公开涉及图像处理
,尤其涉及一种样本图像确定方法和装置、电子设备及存储介质。
技术介绍
近来,深度学习在视频图像、语音识别、自然语言处理等相关领域得到了广泛应用。卷积神经网络作为深度学习的一个重要分支,由于其超强的拟合能力以及端到端的全局优化能力,使得视频图像分类任务在应用卷积神经网络之后,预测精度大幅提升。虽然目前图像分类模型对图像具有了一定的分类能力,但是仍然会有大量预测错误的样本图像,如何进一步优化图像分类模型成为一个需要解决的问题。在训练图像分类模型时,困难样本图像的作用往往大于简单样本图像。在图像分类模型的学习过程中即便是大量的简单样本图像都很难对图像分类模型的预测精度带来大幅度提升,而困难样本图像往往会给图像分类模型的预测精度带来较大幅度的提升。可见,目前迫切需要本领域技术人员解决的技术问题为,如何从大量样本图像中提取困难样本图像,从而通过困难样本图像对图像分类模型进行训练。
技术实现思路
为克服相关技术中存在的问题,本公开提供了一种样本图像确定方法和装置、电子设备及存储介质。根据本公开实施例的第一方面, ...
【技术保护点】
1.一种样本图像确定方法,其特征在于,所述方法包括:采用第一预设数量的分类器分别对各样本图像进行预测,得到所述各样本图像对应的预测向量;分别将所述各样本图像对应的预测向量转化成概率向量;依据所述各样本图像对应的概率向量,从所述各样本图像中确定困难样本图像。
【技术特征摘要】
1.一种样本图像确定方法,其特征在于,所述方法包括:采用第一预设数量的分类器分别对各样本图像进行预测,得到所述各样本图像对应的预测向量;分别将所述各样本图像对应的预测向量转化成概率向量;依据所述各样本图像对应的概率向量,从所述各样本图像中确定困难样本图像。2.根据权利要求1所述的方法,其特征在于,所述采用第一预设数量的分类器分别对各样本图像进行预测,得到所述各样本图像对应的预测向量,包括:针对每个样本图像,分别采用所述第一预设数量的分类器对各样本图像进行预测,得到所述第一预设数量个分类标签,其中,一个分类器对一个样本图像进行预测时生成一个分类标签;依据所述第一预设数量个分类标签,生成所述样本图像对应的预测向量。3.根据权利要求1所述的方法,其特征在于,所述分别将所述各样本图像对应的预测向量转化成概率向量,包括:针对每个样本图像,确定所述样本图像对应的预测向量中各分类标签出现的次数;针对所述预测向量中出现的每个分类标签,依据所述分类标签出现的次数和所述预测向量中的分类标签总个数,确定所述分类标签对应的概率值;依据所述预测向量中出现的所述各分类标签和所述各分类标签对应的概率值,生成所述预测向量对应的概率向量。4.根据权利要求1所述的方法,其特征在于,所述依据所述各样本图像对应的概率向量,从所述各样本图像中确定困难样本图像,包括:分别计算各所述样本图像对应的概率向量的信息熵,其中,每个样本图像对应一个信息熵;依据所述各样本图像对应的信息熵,确定所述各样本图像中的困难样本图像。5.根据权利要求4所述的方法,其特征在于,所述依...
【专利技术属性】
技术研发人员:张志伟,王希爱,王树强,
申请(专利权)人:北京达佳互联信息技术有限公司,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。