水下抗湍流高速光孤子通信系统技术方案

技术编号:20430492 阅读:29 留言:0更新日期:2019-02-23 10:34
水下抗湍流高速光孤子通信系统,属于无线通信技术领域,为解决现有的水下激光通信系统存在的通信距离短、抗海洋湍流效应差、难以达到长距离高速率通信的问题,该系统为数据源通过电缆连接孤子激光器,孤子激光器输出端与光纤放大器一、ASE滤波器、光纤放大器二依次为光纤连接,光纤放大器二的输出端光纤端面位于准直透镜的焦点处,LBO倍频晶体与准直透镜、光学发射天线同轴准直放置;光学接收天线与光学发射天线同轴对准,海水池位于光学发射天线和光学接收天线之间;会聚透镜与光学接收天线同轴准直放置,光电探测器位于会聚透镜焦点处;光电探测器、滤波器和解调器依次电缆连接;该系统在海水信道高速长距离通信领域具有广泛的应用前景。

Underwater anti-turbulence high-speed optical soliton communication system

The underwater anti-turbulence high-speed optical soliton communication system belongs to the field of wireless communication technology. In order to solve the problems existing in the existing underwater laser communication system, such as short communication distance, poor anti-ocean turbulence effect and difficulty in achieving long-distance high-speed communication, the system connects the soliton laser with the data source by cable, the output end of the soliton laser with the optical fiber amplifier I, ASE filter and optical fiber. The second amplifier is connected by optical fibers in turn. The output end of the second amplifier is located at the focal point of the collimating lens. The LBO frequency doubling crystal is collimated with the collimating lens and the optical transmitting antenna; the optical receiving antenna is collimated with the optical transmitting antenna, and the seawater pool is located between the optical transmitting antenna and the optical receiving antenna; the convergent lens is collimated with the optical receiving antenna. The photodetectors are located at the focus of the convergent lens, and the photodetectors, filters and demodulators are connected by cables in turn. The system has wide application prospects in the field of high-speed and long-distance communication of sea-water channel.

【技术实现步骤摘要】
水下抗湍流高速光孤子通信系统
本技术属于无线通信
,具体涉及基于光孤子抗干扰特性的水下高速远距离无线通信系统。
技术介绍
水下无线通信(UWOC)是指通过使用无线载波即无线电波,声波和光波在无导向的水环境中传输数据,与无线电通信和水声通信相比,UWOC具有更高的传输带宽,从而提供更高的数据速率。由于这种高速传输优势,UWOC近年来引起了相当的关注,波长在400nm到580nm之间的光波在海水中衰减比较小,称为“蓝绿窗口”,目前UWOC系统中大多采用蓝绿激光器直接调制,信号多使用矩形和高斯形脉冲,大量实验显示此类系统满足不了长距离的通信要求,现有水下激光通信速率满足Gbps量级时,通信距离在几十米范围。。为此在保持高速通信的同时追求更远的通信距离是不可避免的趋势。文献:Liu,Xiaoyan,etal."34.5mUnderwateropticalwirelesscommunicationwith2.70GbpsdataratebasedonagreenlaserwithNRZ-OOKmodulation."SolidStateLighting:InternationalForu本文档来自技高网...

【技术保护点】
1.水下抗湍流高速光孤子通信系统,其特征是,其包括数据源(12)、孤子激光器(13)、光纤放大器一(14)、ASE滤波器(15)、光纤放大器二(16)、准直透镜(17)、LBO倍频晶体(18)、光学发射天线(19)、海水池(20)、光学接收天线(21)、会聚透镜(22)、光电探测器(23)、滤波器(24)和解调器(25);数据源(12)通过电缆连接孤子激光器(13),孤子激光器(13)输出端与光纤放大器一(14)、ASE滤波器(15)、光纤放大器二(16)依次为光纤连接,光纤放大器二(16)输出端光纤端面位于准直透镜(17)的焦点处,LBO倍频晶体(18)与准直透镜(17)、光学发射天线(19...

【技术特征摘要】
1.水下抗湍流高速光孤子通信系统,其特征是,其包括数据源(12)、孤子激光器(13)、光纤放大器一(14)、ASE滤波器(15)、光纤放大器二(16)、准直透镜(17)、LBO倍频晶体(18)、光学发射天线(19)、海水池(20)、光学接收天线(21)、会聚透镜(22)、光电探测器(23)、滤波器(24)和解调器(25);数据源(12)通过电缆连接孤子激光器(13),孤子激光器(13)输出端与光纤放大器一(14)、ASE滤波器(15)、光纤放大器二(16)依次为光纤连接,光纤放大器二(16)输出端光纤端面位于准直透镜(17)的焦点处,LBO倍频晶体(18)与准直透镜(17)、光学发射天线(19)同轴准直放置;光学接收天线(21)与光学发射天线(19)同轴对准,海水池(20)位于光学发射天线(19)和光学接收天线(21)之间;会聚透镜(22)与光学接收天线(21)同轴准直放置,光电探测器(23)位于会聚透镜(22)焦点处;光电探测器(23)、滤波器(24)和解调器(25)依次电缆连接。2.根据权利要求1所述的水下抗湍流高速光孤子通信系统,其特征在于,光学发射天线(19)和光学接收天线(21)对准后,数据源(12)注入孤子激光器(13)产生调制光信号,经光纤进入到光纤放大器一(14)放大,放大后的光信号由ASE滤波器(15)去噪声后由光纤放...

【专利技术属性】
技术研发人员:张鹏王阳王大帅李晓燕陈纯毅尚吉扬刘闯王天枢张立中佟首峰姜会林
申请(专利权)人:长春理工大学
类型:新型
国别省市:吉林,22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1