一种太赫兹叠层成像探针位置误差校正方法技术

技术编号:20422157 阅读:17 留言:0更新日期:2019-02-23 07:32
本发明专利技术公开了一种太赫兹叠层成像探针位置误差校正方法,该方法包括将探测器采集到的衍射图样进行角谱回传到物平面,由于物平面的衍射图包含着物函数的信息,通过对相邻两幅衍射图回传的物面幅值做互相关运算,由于物面幅值交叠处存在着重复的部分,所以可以通过寻找相关峰得出相邻两幅探针位置的偏移量,定义初始点位置后便可得到全部探针的位置信息,将求得的位置作为输入,用来作为叠层迭代算法探针的位置坐标。通过相邻携带样品信息的小孔衍射图,用亚像素匹配的方法计算得出探针在物平面位置信息。以亚像素精度获取探针与样品的相对位置变化量,提高迭代算法的运算效率以及收敛速度,并提高成像保真度。

【技术实现步骤摘要】
一种太赫兹叠层成像探针位置误差校正方法
本专利技术涉及一种太赫兹叠层成像探针位置误差校正的方法,特别是涉及一种连续太赫兹叠层成像位置误差校正以提高再现算法的计算效率和成像保真度。
技术介绍
太赫兹波(Terahertz,THz)是指位于红外与微波波段之间、频率在0.1到10THz范围内、对应波长为0.03到3mm的电磁波,由于具有宽光谱、高穿透性、低能性、惧水性等多种重要特性,对安检反恐、无损检测、医学成像等领域产生了深远的影响。太赫兹叠层成像是一种通过采集交叠的衍射图样恢复出样品复振幅分布的无透镜相干衍射成像技术。其成像原理为:被小孔约束的照明光束在物平面形成照明探针,照明探针与样品之间有相对移动,在记录面采集不同样品位置对应衍射图样的强度信息,基于相位恢复算法的叠层再现算法重建获得样品的吸收系数和相位信息,以及照明探针在物平面的复振幅分布。既能保留太赫兹波所独有的传输特性,也能充分发挥叠层成像对大尺寸样品高分辨率快速成像的优势。与其他成像方法相比,其具有光路结构紧凑、对光源相干性要求低、样品尺寸不再受限等优点,是一种可利用现阶段太赫兹器件实现、满足现代生物医学无损可视化研究迫切需求的连续太赫兹波成像技术。太赫兹叠层再现质量依赖于精确的探针位置,但是平移台精度、太赫兹波光强分布不均匀、功率不稳定等因素都不可避免的引起位置误差。现有的误差校正算法都是在通过每次循环中引入新的约束条件,多次迭代逐步逼近真实位置,但多次迭代影响计算效率。为此我们提出了一种在不需要对探针位置有预知的情况下,直接用衍射计算得出探针位置信息,其精度可达到亚像素级别,用其作为迭代算法的探针位置坐标可以大大减少了对实验中所用平移台、步进电机精度的要求,同时提高迭代算法的运算效率、收敛速度和成像保真度。
技术实现思路
本专利技术的目的在于通过相邻携带样品信息的小孔衍射图,用亚像素匹配的方法计算得出探针在物平面位置信息。以亚像素精度获取探针与样品的相对位置变化量,从而得到更为精准的探针位置,减少了对实验中所用平移台、步进电机精度的要求,提高迭代算法的运算效率以及收敛速度,并提高成像保真度。为实现上述目的,本专利技术采用的技术方案为一种太赫兹叠层成像探针位置误差校正方法,实现该方法的成像系统光路包括二氧化碳泵浦连续太赫兹激光器,两个镀金离轴抛物面镜,带圆孔掩膜板,被测样品,三维电动平移台,面阵式热释电探测器。二氧化碳泵浦连续太赫兹激光器作为辐射源;离轴抛物面镜将激光器辐射出的连续太赫兹波扩束准直成平行光;掩膜板中心为一个直径为3.3mm的小孔;被测样品置于掩膜板与面阵式热释电探测器之间,被测样品贴近掩膜板,同时尽量靠近探测器,样品固定在三维电动平移台上,三维电动平移台x轴、y轴用以水平、垂直移动待测样品,z轴调节样品沿光轴方向的位置;太赫兹波由激光器生成后,通过两个离轴抛物面镜进行扩束准直,经过掩膜板照射在样品上,透过样品后由热释电探测器记录。通过移动三维平移台,热释电探测器采集到样品交叠的小孔衍射图Ij(u),其中j=1,2,3…J,J是衍射图样的总数。该方法包括将探测器采集到的衍射图样进行角谱回传到物平面,由于物平面的衍射图包含着物函数的信息,可以通过对相邻两幅衍射图回传的物面幅值做互相关运算,由于物面幅值交叠处存在着重复的部分,所以可以通过寻找相关峰得出相邻两幅探针位置的偏移量,定义初始点位置后便可得到全部探针的位置信息,将求得的位置作为输入,用来作为叠层迭代算法探针的位置坐标。一种太赫兹叠层成像探针位置误差校正的方法,其提高成像保真度,提高迭代算法的运算效率以及收敛速度的过程分为三个步骤:S1调节探针与被测样品间距为d1,被测样品与探测器间距为d2,去掉探针,用探测器记录样品的全息图I0(u),利用全息自聚焦算法,精准计算出衍射距离d2。S2将探针加入光路中,按照电动平移台的扫描路径依次采集样品的小孔衍射图Ij(u),其中j=1,2,3…J,J是衍射图样的总数。S3利用角谱回传算法通过对衍射图Ij(u)求得初始位置坐标。求得位置坐标的过程分为以下四个步骤:S3.1样品透过率函数和探针函数分别表示为O(r)和P(r),物平面的复振幅分布为O(r)P(r),则测量的衍射图强度Ij(u)表示为:Ij(u)=|G<O(r-Rj)P(r)>|2(1)其中r=(x,y)是物平面上的坐标向量,Rj=(Xj,Yj)表示第j个衍射图样的平移向量。G<>表示衍射传播算子,传播距离为物面到探测器面间距d2。S3.2第一个位置物面复振幅ψ1(r)表示为:复振幅还能够表示为样品透过率函数O(r-R1)与探针函数P(r)相乘的形式:ψ1(r)=O(r-R1)P(r)(3)其包含着第一个物函数的位置信息。第二个位置物面复振幅ψ2(r)表示为:其包含着第二个物函数的位置信息。S3.3通过角谱回传物面求得的ψ1(u)与ψ2(u)进行亚像素匹配。首先将其分别做快速傅里叶变换得到其频谱分布Ψ1(v)和Ψ2(v),计算其中表示Ψ2(v)的复共轭。将结果嵌入一个放大k倍的矩阵中,k的大小由亚像素精度决定,矩阵的其他部分由零的填充。将矩阵进行快速傅里叶变换获得上采样互相关,通过定位峰值可确定探针位置的偏移量(Δx1,Δy1),按照迭代顺序依次算出其余的位置偏移量。位移偏移量表示为:Δx=(Δx1,Δx2,...ΔxJ-1)(5)Δy=(Δy1,Δy2,...ΔyJ-1)(6)S3.4定义初始物函数的位置坐标(x1,y1),根据xj=xj-1+Δxj-1(j=2,3,...,J)(7)yj=yj-1+Δyj-1(j=2,3,...,J)(8)从而以亚像素精度算出其余对应的探针中心位置坐标。本专利技术的典型实施例的试验结果表明,通过将相邻携带样品信息的小孔衍射图进行角谱回传到物平面,利用相关运算寻找相关峰以亚像素精度求得探针位置的偏移量,定义初始点位置后得到全部探针的位置信息。在不需要对探针位置有预知的情况下,得到了更为准确的位置信息,减少了对实验中所用平移台、步进电机精度的要求。并且由于其在迭代算法之前,极大的减少了运算时间,提高迭代算法的运算效率以及收敛速度。与现有技术相比,本专利技术提出的一种太赫兹叠层成像探针位置误差校正的方法,将探测器采集到的衍射图样进行角谱回传到物平面,利用相关运算寻找相关峰以亚像素精度求得探针位置的偏移量,定义初始点位置后得到全部探针的位置信息。在不需要对探针位置有预知的情况下,得到了更为准确的位置信息,减少了对实验中所用平移台、步进电机精度的要求。并且由于其在迭代算法之前便可以获得较为精准的探针位置坐标,极大的减少了运算时间,提高迭代算法的运算效率以及收敛速度。附图说明图1是一种太赫兹叠层成像探针位置误差校正的方法的系统光路。图中:1、FIRL295型二氧化碳泵浦连续太赫兹激光器,2、第一离轴抛物面镜,3、第二离轴抛物面镜,4、带圆孔掩膜板,5、被测样品,6、三维电动平移台,7、PY-III面阵式热释电探测器。具体实施方式如图1所示,一种太赫兹叠层成像探针位置误差校正方法,其特征在于:实现该方法的成像系统光路包括FIRL295型二氧化碳泵浦连续太赫兹激光器1,焦距为50.8mm的第一镀金离轴抛物面镜2,焦距为101.6mm的第二镀金本文档来自技高网
...

【技术保护点】
1.一种太赫兹叠层成像探针位置误差校正方法,实现该方法的成像系统光路包括二氧化碳泵浦连续太赫兹激光器,两个镀金离轴抛物面镜,带圆孔掩膜板,被测样品,三维电动平移台,面阵式热释电探测器;二氧化碳泵浦连续太赫兹激光器作为辐射源;离轴抛物面镜将激光器辐射出的连续太赫兹波扩束准直成平行光;掩膜板中心为一个直径为3.3mm的小孔;被测样品置于掩膜板与面阵式热释电探测器之间,被测样品贴近掩膜板,同时尽量靠近探测器,样品固定在三维电动平移台上,三维电动平移台x轴、y轴用以水平、垂直移动待测样品,z轴调节样品沿光轴方向的位置;太赫兹波由激光器生成后,通过两个离轴抛物面镜进行扩束准直,经过掩膜板照射在样品上,透过样品后由热释电探测器记录;通过移动三维平移台,热释电探测器采集到样品交叠的小孔衍射图Ij(u),其中j=1,2,3…J,J是衍射图样的总数;其特征在于:该方法将探测器采集到的衍射图样进行角谱回传到物平面,由于物平面的衍射图包含着物函数的信息,通过对相邻两幅衍射图回传的物面幅值做互相关运算,由于物面幅值交叠处存在着重复的部分,所以可以通过寻找相关峰得出相邻两幅探针位置的偏移量,定义初始点位置后便可得到全部探针的位置信息,将求得的位置作为输入,用来作为叠层迭代算法探针的位置坐标。...

【技术特征摘要】
1.一种太赫兹叠层成像探针位置误差校正方法,实现该方法的成像系统光路包括二氧化碳泵浦连续太赫兹激光器,两个镀金离轴抛物面镜,带圆孔掩膜板,被测样品,三维电动平移台,面阵式热释电探测器;二氧化碳泵浦连续太赫兹激光器作为辐射源;离轴抛物面镜将激光器辐射出的连续太赫兹波扩束准直成平行光;掩膜板中心为一个直径为3.3mm的小孔;被测样品置于掩膜板与面阵式热释电探测器之间,被测样品贴近掩膜板,同时尽量靠近探测器,样品固定在三维电动平移台上,三维电动平移台x轴、y轴用以水平、垂直移动待测样品,z轴调节样品沿光轴方向的位置;太赫兹波由激光器生成后,通过两个离轴抛物面镜进行扩束准直,经过掩膜板照射在样品上,透过样品后由热释电探测器记录;通过移动三维平移台,热释电探测器采集到样品交叠的小孔衍射图Ij(u),其中j=1,2,3…J,J是衍射图样的总数;其特征在于:该方法将探测器采集到的衍射图样进行角谱回传到物平面,由于物平面的衍射图包含着物函数的信息,通过对相邻两幅衍射图回传的物面幅值做互相关运算,由于物面幅值交叠处存在着重复的部分,所以可以通过寻找相关峰得出相邻两幅探针位置的偏移量,定义初始点位置后便可得到全部探针的位置信息,将求得的位置作为输入,用来作为叠层迭代算法探针的位置坐标。2.根据权利要求1所述的一种太赫兹叠层成像探针位置误差校正方法,其特征在于:S1调节探针与被测样品间距为d1,被测样品与探测器间距为d2,去掉探针,用探测器记录样品的全息图I0(u),利用全息自聚焦算法,精准计算出衍射距离d2;S2将探针加入光路中,按照电动平移台的扫描路径依次采集样品的小孔衍射图Ij(u),其中j=1,2,3…J,J是衍射图样的总数...

【专利技术属性】
技术研发人员:王大勇戎路唐超王云新赵洁
申请(专利权)人:北京工业大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1