基于显著语境稀疏表示的目标追踪方法技术

技术编号:19905515 阅读:45 留言:0更新日期:2018-12-26 03:33
本发明专利技术提供了基于显著语境稀疏表示的目标追踪方法,属于图像处理领域,包括提取样本图像的特征映射,分别对中心区域和边缘区域的特征映射,将得到的特征映射进行融合处理;对融合后的图像进行稀疏处理,基于处理后的图像进行遮挡求解,对待测视频中的两个连续帧进行建模,基于已建立的模型进行遮挡判断,当判断出现遮挡时,使用前述内容计算当前帧的可视显著性映射,在得到的显著性图中与每个目标模板进行比较,选取权重最高的目标模板作为追踪结果。通过将目标对象被提取为一个显著特征映射,用稀疏表示和显著的语境校正部分遮挡和突然运动的目标,本方法计算简单,提升了目标追踪的有效性和准确性,抗干扰能力也大大提高。

【技术实现步骤摘要】
基于显著语境稀疏表示的目标追踪方法
本专利技术属于图像处理领域,特别涉及基于显著语境稀疏表示的目标追踪方法。
技术介绍
目标跟踪在视频监控、威胁检测、复合安全、人机交互等众多应用中发挥着至关重要的作用,近年来已经取得了大量的进展。一般来说,一个跟踪算法使用一个外观模型来表示对象,并用对象表示来评估预测的图像补丁。此外,还应用动态模型来不断地计算目标的状态。通过对视觉信息的过滤和选择,可以有效地提高跟踪程序。IttiL等人首先提出基于显著性视觉注意力模型,用于快速场景分析。WuY等人提倡在稀疏编码的特征空间中寻找合适的度量标准,提出一种基于度量的结构外观模型,以便更准确地匹配不同的外观。MeiX将稀疏表示扩展到对象跟踪,然而由于该方法可以利用l_1最小化公式处理每个粒子的最小值,计算量较大,且随着目标和背景之间的模糊性越来越大,可能会导致跟踪失败。现有技术中由于光照变化、遮挡、尺度变化和背景杂波等因素影响,鲁棒性和抗干扰能力较弱。
技术实现思路
为了解决现有技术中存在的缺点和不足,本专利技术提供了基于显著语境稀疏表示的目标追踪方法,用于提升跟踪的稳定性。为了达到上述技术目的,本专利技术提供本文档来自技高网...

【技术保护点】
1.基于显著语境稀疏表示的目标追踪方法,其特征在于,所述目标追踪方法,包括:步骤一,提取样本图像的特征映射,分别对中心区域和边缘区域的特征映射,将得到的特征映射进行融合处理;步骤二,对融合后的图像进行稀疏处理,基于处理后的图像进行遮挡求解;步骤三,对待测视频中的两个连续帧进行建模,基于已建立的模型进行遮挡判断,当判断出现遮挡时,使用步骤一和步骤二的内容计算当前帧的可视显著性映射,在得到的显著性图中与每个目标模板进行比较,选取权重最高的目标模板作为追踪结果。

【技术特征摘要】
1.基于显著语境稀疏表示的目标追踪方法,其特征在于,所述目标追踪方法,包括:步骤一,提取样本图像的特征映射,分别对中心区域和边缘区域的特征映射,将得到的特征映射进行融合处理;步骤二,对融合后的图像进行稀疏处理,基于处理后的图像进行遮挡求解;步骤三,对待测视频中的两个连续帧进行建模,基于已建立的模型进行遮挡判断,当判断出现遮挡时,使用步骤一和步骤二的内容计算当前帧的可视显著性映射,在得到的显著性图中与每个目标模板进行比较,选取权重最高的目标模板作为追踪结果。2.根据权利要求1所述的基于显著语境稀疏表示的目标追踪方法,其特征在于,所述提取样本图像的特征映射,分别对中心区域和边缘区域的特征映射,将得到的特征映射进行融合处理,包括:将图像分解为一组特征映射,从特征映射中提取颜色映射CRG,CBY、亮度映射I和局部方向映射O,O的计算公式如公式1所示O(θ)=||IG0(θ)||+||IGπ/2(θ)||公式1其中G(.)代表Gabor过滤器,θ是局部方向;获取中心区域与周围区域的对比:利用不同空间尺度的图像的差分来模拟对比度,处理公式如公式2所示Fl(c,s)=|Fl(c)ΘFl(s)|公式2其中Fl(c)代表中部区域特性,Fl(s)代表周边区域特性,Θ的意思是用相同的大小插入这两个图像,并计算每个像素的差分;使用归一化函数N(.)和跨尺度加法运算,将各特征的获得的映射分别进行融合,以实现规模的统一,处理公式如公式3所示Mk=αN(Ik)+βN(Ck)+γN(Ok)公式3其中Ik,Ck,Ok表示第k个坐标系中的颜色、亮度和方向特征显著性映射,α,β,γ,为权重因子,用于减轻图像质量、图像噪声或其他元素的干扰。3.根据权利要求1所述的基于显著语境稀疏表示的目标追踪方法,其特征在于,所述对融合后的图像进行稀疏处理,基于处理后的图像进行遮挡求解,包括:将跟踪问题转换为稀疏表示的最可能的补丁,并通过公式4的...

【专利技术属性】
技术研发人员:王彦波戴波罗旺梅峰欧阳柳姚一杨叶伟静
申请(专利权)人:国网浙江省电力有限公司国网浙江省电力有限公司信息通信分公司南瑞集团有限公司
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1