一种基于KCF算法的运动预测方法技术

技术编号:19905509 阅读:50 留言:0更新日期:2018-12-26 03:33
本发明专利技术涉及一种基于核相关滤波KCF算法的运动预测方法,包括:在模板图像中选取四个以上非共线的点X1、X2、X3、X4;在模板图像中分别以所选取的点X1、X2、X3、X4为中心选取矩形块;根据模板图像与上一帧的图像位置关系确定所选取的点X1、X2、X3、X4在上一帧中的位置X1’、X2’、X3’、X4’作为当前帧的搜索中心点;在当前帧中分别以位置X1’、X2’、X3’、X4’为中心选取相应矩形块作为KCF算法的搜索区域;使用核相关滤波KCF算法在所述搜索区域中确定X1、X2、X3、X4在当前帧中的粗略位置X1”、X2”、X3”、X4”;使用匹配算法根据所述粗略位置X1”、X2”、X3”、X4”在以X1”、X2”、X3”、X4”为中心的矩形区域中进行匹配以确定X1、X2、X3、X4在当前帧中的精细位置X1”’、X2”’、X3”’、X4”’。

【技术实现步骤摘要】
一种基于KCF算法的运动预测方法
本专利技术总体而言涉及图像处理领域,具体而言涉及一种基于KCF算法的运动预测方法。
技术介绍
KCF(KernelCorrelationFilter核相关滤波算法)是一种鉴别式追踪方法,这类方法一般在追踪过程中训练一个目标检测器,然后使用目标检测器去检测下一帧预测位置是否是目标,随后再使用新检测结果去更新训练集进而更新目标检测器。在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,因此越靠近目标的区域为正样本的可能性越大。KCF跟踪器对发生光照变化、遮挡、非刚性形变、运动模糊、背景杂乱等的视频均能跟踪良好,且速度较快。KCF跟踪算法的主要特点有:(1)使用目标周围区域的循环矩阵采集正负样本,利用脊回归训练目标检测器,并成功的利用循环矩阵在傅里叶空间可对角化的性质将矩阵的运算转化为向量的Hadamad积,即元素的点乘,大大降低了运算量,提高了运算速度,使算法满足实时性要求。(2)将线性空间的脊回归通过核函数映射到非线性空间,在非线性空间通过求解一个对偶问题和某些常见的约束,同样的可以使用循环矩阵傅里叶空间对角化简化计算。(3)引进了多通本文档来自技高网...

【技术保护点】
1.一种基于核相关滤波KCF算法的运动预测方法,包括下列步骤:在模板图像中选取四个以上非共线的点X1、X2、X3、X4;在模板图像中分别以所选取的点X1、X2、X3、X4为中心选取矩形块;根据模板图像与上一帧的图像位置关系确定所选取的点X1、X2、X3、X4在上一帧中的位置X1’、X2’、X3’、X4’作为当前帧的搜索中心点;在当前帧中分别以位置X1’、X2’、X3’、X4’为中心选取相应矩形块作为KCF算法的搜索区域;使用核相关滤波KCF算法在所述搜索区域中确定X1、X2、X3、X4在当前帧中的粗略位置X1”、X2”、X3”、X4”;使用匹配算法根据所述粗略位置X1”、X2”、X3”、X4”...

【技术特征摘要】
1.一种基于核相关滤波KCF算法的运动预测方法,包括下列步骤:在模板图像中选取四个以上非共线的点X1、X2、X3、X4;在模板图像中分别以所选取的点X1、X2、X3、X4为中心选取矩形块;根据模板图像与上一帧的图像位置关系确定所选取的点X1、X2、X3、X4在上一帧中的位置X1’、X2’、X3’、X4’作为当前帧的搜索中心点;在当前帧中分别以位置X1’、X2’、X3’、X4’为中心选取相应矩形块作为KCF算法的搜索区域;使用核相关滤波KCF算法在所述搜索区域中确定X1、X2、X3、X4在当前帧中的粗略位置X1”、X2”、X3”、X4”;使用匹配算法根据所述粗略位置X1”、X2”、X3”、X4”在以X1”、X2”、X3”、X4”为中心的矩形区域中进行匹配以确定X1、X2、X3、X4在当前帧中的精细位置X1”’、X2”’、X3”’、X4”’。2.根据权利要求1所述的方法,其中根据模板图像与上一帧的图像位置关系确定所选取的点X1、X2、X3、X4在上一帧中的位置X1’、X2’、X3’、X4’包括:根据表征模板图像与上一帧的图像位置关系的单应矩阵Hn-1确定所选取的点X1、X2、X3、X4在上一帧中的位置X1’、X2’、X3’、X4’作为当前帧的搜索中心点。3.根据权利要求1所述的方法,其中使用匹配...

【专利技术属性】
技术研发人员:肖东晋张立群
申请(专利权)人:阿依瓦北京技术有限公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1