一种基于自抗扰控制软开关的光伏逆变器并网控制装置制造方法及图纸

技术编号:19149241 阅读:65 留言:0更新日期:2018-10-13 10:11
本发明专利技术公开了一种基于自抗扰控制软开关的光伏逆变器并网控制装置,包括依次连接的箝位软开关、三相全桥逆变器、LC滤波器构成的逆变模块,以及与箝位软开关输入端连接的PV光伏阵列,MPPT最大电压电流跟踪器的输入端连接PV光伏阵列,输出端连接调节检测模块,所述LC滤波器的输出端通过调节检测模块连接SVPWM发生器,SVPWM发生器的输出端连接三相全桥逆变器的控制端,所述的三相全桥逆变器的控制量检测输出端还连接有软开关控制模块,所述的软开关控制模块包括依次连接的软开关条件检测模块、软开关自抗扰控制模块、功率放大器和补偿装置,所述补偿装置的输出端连接箝位软开关的控制端。

A grid connected PV inverter controller based on active disturbance rejection control and soft switching

The invention discloses a grid-connected control device for photovoltaic inverter based on ADRC soft-switching, which comprises a clamped soft-switching module, a three-phase full-bridge inverter and an LC filter connected sequentially, and a PV photovoltaic array connected with a clamped soft-switching input terminal, and an input terminal connection of a MPPT maximum voltage and current tracker. The output end of the LC filter is connected with the SVPWM generator by the adjusting detection module, and the output end of the SVPWM generator is connected with the control end of the three-phase full-bridge inverter. The control output end of the three-phase full-bridge inverter is also connected with the soft-switching control module. The soft-switching control module comprises a soft-switching condition detection module, a soft-switching auto-disturbance rejection control module, a power amplifier and a compensation device connected sequentially. The output end of the compensation device is connected with a clamped soft-switching control terminal.

【技术实现步骤摘要】
一种基于自抗扰控制软开关的光伏逆变器并网控制装置
本专利技术属于光伏并网控制
,尤其涉及一种基于自抗扰控制软开关的光伏逆变器并网控制装置。
技术介绍
随着环境问题日益突出,传统的化石能源也日益枯竭,开发和利用可再生能源成为人类展的必由之路。而随着社会的快速发展,人们对于电力的需求也在逐渐增长,使得太阳能光伏发电技术在这种形势下进入了快速发展的阶段,光伏并网发电成为人们利用太阳能的主要途径,逆变器作为光伏并网发电的核心器件之一,它的切换控制也成为研究的重点。目前常用的光伏逆变器是使用PID控制,在控制系统运行中,受环境变化、电网波动、以及模型参数不确定性等问题的影响,并网过程扰动也较大,在微网投切瞬间对于电网的影响也较大。基于软开关的逆变器是一种能很好地减少逆变器的开关损耗和开关噪声的方法。软开关利用电容电感来实现谐振,使得电路开关在开通和关断时实现零电压开通和零电流关断,极大地减小了开关损耗和开关噪声。传统的基于软开关的光伏逆变器并网控制系统包括PV光伏阵列、箝位软开关、三相全桥逆变器、LC滤波器、调节检测自抗扰控制器、SVPWM发生器、MPPT最大电压电流跟踪器,调节检测自抗扰控制器从Park变换器和MPPT最大电压电流跟踪器中接收到信号后经过处理然后送入SVPWM脉冲发生器中控制三相全桥逆变器中各个功率管的开通与关断。这种控制系统在并网开关过程中逆变器的损耗较大,抗干扰能力较弱,电能质量不高,响应速度有些慢。
技术实现思路
本专利技术的目的是提供一种基于自抗扰控制软开关的光伏逆变器并网控制装置,能减少并网开关过程中逆变器的损耗,提高抗干扰能力以及它的响应速度,并网稳定性更高。为达到上述目的,本专利技术采用的技术方案是:一种基于自抗扰控制软开关的光伏逆变器并网控制装置,包括依次连接的箝位软开关、三相全桥逆变器、LC滤波器构成的逆变模块,以及与箝位软开关输入端连接的PV光伏阵列,MPPT最大电压电流跟踪器的输入端连接PV光伏阵列,输出端连接调节检测模块,所述LC滤波器的输出端通过调节检测模块连接SVPWM发生器,SVPWM发生器的输出端连接三相全桥逆变器的控制端,所述的三相全桥逆变器的控制量检测输出端还连接有软开关控制模块,所述的软开关控制模块包括依次连接的软开关条件检测模块、软开关自抗扰控制模块、功率放大器和补偿装置,所述补偿装置的输出端连接箝位软开关的控制端。所述的软开关自抗扰控制模块包括扩张状态观测器ESO、跟踪微分器、第一减法器、第二减法器、非线性误差反馈率模块、第一补偿因子、第三减法器、第二补偿因子;跟踪微分器的输入端输入设定参考值;跟踪微分器的第一输出端连接第一减法器的第二输入端,跟踪微分器的第二输出端连接第二减法器的第二输入端,第一减法器的第一输入端连接扩张状态观测器ESO的第一输出端;第二减法器的第一输入端连接扩张状态观测器ESO的第二输出端;第一减法器和第二减法器的输出端分别连接非线性误差反馈率模块的两个输入端,非线性误差反馈率模块的输出端连接第三减法器的第二输入端;扩张状态观测器ESO的第三输出端连接第一补偿因子,第一补偿因子的信号输出端连接第三减法器的第一输入端;第三减法器的输出端连接第二补偿因子,第二补偿因子的输出端连接扩张状态观测器ESO的第一输入端;第三减法器的输出端连接被控对象的第一输入端,被控对象的第二输入端连接软开关实现检测模块的输出端,被控对象的输出端连接扩张状态观测器ESO的第二输入端,被控对象的输出端即软开关自抗扰控制模块的输出端。所述的箝位软开关包括第一电容、第一电感、软开关功率管,所述第一电容的一端连接光伏阵列的一端和第一电感的第一端,第一电容的第二端连接软开关功率管的集电极,软开关功率管的源极连接第一电感的第二端和光伏阵列的另一端,第一电感的第二端和光伏阵列的另一端分别连接三相全桥逆变器的输入端。所述的LC滤波器包括第三电容、第四电容、第五电容和第二电感、第三电感、第四电感组成的三个LC高通滤波器,所述的第二电感、第三电感、第四电感的第一端分别与三相全桥逆变器的输出端连接,第二电感、第三电感、第四电感的第二端分别连接第三电容、第四电容、第五电容的第一端,第二电感、第三电感、第四电感的第二端还分别连接电网,第三电容、第四电容、第五电容的第二端连接。所述的调节检测模块包括Park变换器和调节检测自抗扰控制器,所述的调节检测自抗扰控制器包括第一自抗扰控制器和第二自抗扰控制器,所述的第一自抗扰控制器和第二自抗扰控制器的结构和软开关自抗扰控制模块的结构相同;Park变换器的输入端连接LC滤波器中第二电感、第三电感、第四电感的第二端,Park变换器的第一输出端、第二输出端分别连接第一自抗扰控制器和第二自抗扰控制器的扰动输入端,第一自抗扰控制器和第二自抗扰控制器的扰动输入端还输入有MPPT最大电压电流跟踪器的输出信号,第一自抗扰控制器和第二自抗扰控制器的参考输入端分别输入电流在d轴和q轴分量的参考值,第一自抗扰控制器和第二自抗扰控制器的输出端连接SVPWM发生器的输入端,SVPWM发生器的输出端连接三相全桥逆变器的六个功率管的控制端。本专利技术具有的优点是:本专利技术在现有的自抗扰控制SVPWM的外环基础上,再加入以软开关自抗扰控制器为核心的对软开关控制的内环控制系统,外环控制主要是利用自抗扰控制器对于电网侧的电压电流检测,时时跟踪,抗扰动相结合控制SVPWM发生器,SVPWM根据检测到的信号的情况加以分析,抗除扰动,然后给各个功率管发触发脉冲,驱动相应功率管开通完成把光伏阵列所产生的直流电变为标准的交流电。加入的软开关控制模块以自抗扰控制器为核心,对于非线性的扰动有极强的抗干扰能力和控制品质,使得开通时间更准确,更好地解决了传统控制器的超调与快速性的固有矛盾,并网系统的无缝切换更能平稳,让逆变器的开关过程损耗更少,而且响应速度也更快,也提高了供电质量。附图说明图1是本专利技术的电路原理图;图2是自抗扰控制模块的结构图。具体实施方式本专利技术公开了一种基于自抗扰控制软开关的光伏逆变器并网控制装置,如图1所示,包括逆变模块1,逆变模块1包括依次连接的箝位软开关101-1、三相全桥逆变器101-2、LC滤波器102,以及与箝位软开关101-1输入端连接的PV光伏阵列5,MPPT最大电压电流跟踪器4的输入端连接PV光伏阵列5,输出端连接调节检测模块3,所述LC滤波器102的输出端通过调节检测模块3连接SVPWM发生器7,SVPWM发生器7的输出端连接三相全桥逆变器101-2的控制端。所述的三相全桥逆变器101-2的控制量检测输出端还连接有软开关控制模块2,所述的软开关控制模块2包括依次连接的软开关条件检测模块201、软开关自抗扰控制模块202、功率放大器203和补偿装置204,所述补偿装置204的输出端连接箝位软开关101-1的控制端。PV光伏阵列5将吸收的光能转换成电能,提供给逆变模块直流电,通过箝位软开关101-1传输到三相全桥逆变器101-2,三相全桥逆变器101-2将输出的交流电通过LC滤波器进行滤波处理后送入电网。其中所述的LC滤波器包括第三电容C3、第四电容C4、第五电容C5和第二电感L2、第三电感L3、第四电感L4组成的三个LC高通滤波器,所述的第二电感L2、第三电感L3、本文档来自技高网...

【技术保护点】
1.一种基于自抗扰控制软开关的光伏逆变器并网控制装置,包括依次连接的箝位软开关、三相全桥逆变器、LC滤波器构成的逆变模块,以及与箝位软开关输入端连接的PV光伏阵列,MPPT最大电压电流跟踪器的输入端连接PV光伏阵列,输出端连接调节检测模块,所述LC滤波器的输出端通过调节检测模块连接SVPWM发生器,SVPWM发生器的输出端连接三相全桥逆变器的控制端,其特征在于:所述的三相全桥逆变器的控制量检测输出端还连接有软开关控制模块,所述的软开关控制模块包括依次连接的软开关条件检测模块、软开关自抗扰控制模块、功率放大器和补偿装置,所述补偿装置的输出端连接箝位软开关的控制端。

【技术特征摘要】
1.一种基于自抗扰控制软开关的光伏逆变器并网控制装置,包括依次连接的箝位软开关、三相全桥逆变器、LC滤波器构成的逆变模块,以及与箝位软开关输入端连接的PV光伏阵列,MPPT最大电压电流跟踪器的输入端连接PV光伏阵列,输出端连接调节检测模块,所述LC滤波器的输出端通过调节检测模块连接SVPWM发生器,SVPWM发生器的输出端连接三相全桥逆变器的控制端,其特征在于:所述的三相全桥逆变器的控制量检测输出端还连接有软开关控制模块,所述的软开关控制模块包括依次连接的软开关条件检测模块、软开关自抗扰控制模块、功率放大器和补偿装置,所述补偿装置的输出端连接箝位软开关的控制端。2.如权利要求1所述的基于自抗扰控制软开关的光伏逆变器并网控制装置,其特征在于:所述的软开关自抗扰控制模块包括扩张状态观测器ESO、跟踪微分器、第一减法器、第二减法器、非线性误差反馈率模块、第一补偿因子、第三减法器、第二补偿因子;跟踪微分器的输入端输入设定参考值;跟踪微分器的第一输出端连接第一减法器的第二输入端,跟踪微分器的第二输出端连接第二减法器的第二输入端,第一减法器的第一输入端连接扩张状态观测器ESO的第一输出端;第二减法器的第一输入端连接扩张状态观测器ESO的第二输出端;第一减法器和第二减法器的输出端分别连接非线性误差反馈率模块的两个输入端,非线性误差反馈率模块的输出端连接第三减法器的第二输入端;扩张状态观测器ESO的第三输出端连接第一补偿因子,第一补偿因子的信号输出端连接第三减法器的第一输入端;第三减法器的输出端连接第二补偿因子,第二补偿因子的输出端连接扩张状态观测器ESO的第一输入端;第三减法器的输出端连接被控对象的第一输入端,被控对象的第二输入端连接软开关实现检测模块的输出端,被控对象的输出端连接扩张状态观测器ESO的第二输入端,被控对象的输出端即软开关自抗扰控制模块的输...

【专利技术属性】
技术研发人员:何国锋兰奇逊曹银刚韩耀飞弓少康樊晓虹杨瑞娟
申请(专利权)人:河南城建学院
类型:发明
国别省市:河南,41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1