一种自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用技术

技术编号:19125002 阅读:197 留言:0更新日期:2018-10-10 06:39
本发明专利技术属于材料制备技术领域,提供一种自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用。该自支撑分级孔正极材料由商业化三聚氰胺泡沫作为碳骨架来源;以间苯二酚、甲醛和硫脲为原料,在单一水溶液中进行自组装,经过老化、干燥和高温碳化得到自支撑氮硫共掺杂分级孔正极材料。所述自支撑分级孔正极材料的比表面积为249‑580m2/g,硫元素含量0.23‑1.87at.%,氮元素含量为2.03‑9.71at.%,高的载硫量从3.0‑12.0mg/cm2。本发明专利技术的效果和益处是:1)该方法制备工艺简单,原材料价格便宜,易得,产品成本低;2)所得正极材料具有极性的表面性质以及丰富的孔结构和离子传输通道,显著提升电极材料的稳定性以及电化学性能。

【技术实现步骤摘要】
一种自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用
本专利技术属于材料制备
,涉及一种自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用。
技术介绍
随着社会的发展和能源结构的变化,能源储存技术成为人们急需解决的问题。在过去几十年来锂电池在社会各方面得到广泛的应用,但是由于其质量比容量很难超过300Wh/kg已经不能很好的满足人们的需求。因此开发具有更高质量比能量的电池,以满足未来社会发展需求,是目前世界各国面临的共同技术挑战。与传统的锂电池相比,锂硫电池具有高达1675mAh/g的理论比容量以及2600Wh/kg理论比能量。同时,单质硫具有资源丰富、廉价、无毒等优点,因此锂硫电池成为了备受青睐的高能量密度二次电池。尽管锂硫电池拥有许多优点,但是仍然存在以下问题限制了锂硫电池的发展和应用。第一,硫单质(S)与其还原产物硫化锂(Li2S)的电子及离子电导率极低,严重影响了硫的利用率。第二,电极反应的中间产物多硫化物(Li2Sx,2<x≤8)在电解液中溶解导致正极材料的活性物质流失,形成“穿梭效应”。第三,在充放电过程中会产生约80%的体积变化,导致正极材料结构的坍塌与粉化。针对以上问题设计合理有效的正极材料可以很大程度上解决以上问题。功能碳材料作为传统的正极材料近几十年吸引了广大学者的研究,但由于非极性的功能碳材料与极性多硫化合物的结合力不强不能很好的达到固硫效果。因此大量研究者对碳材料进行极性杂原子(比如:N、B、S等)掺杂以提高固硫效果,但传统的二维铝箔作为集流体限制了载硫量的进一步提高,而粘结剂的加入则影响了电极的导电性,因此自支撑正极材料的设计得到了广泛的研究,如碳泡沫、泡沫镍、碳布等。但由于这些自支撑材料孔道单一且多为大孔,尚达不到良好的固硫效果和硫的高效利用。因此,一种自支撑分级孔正极材料的设计可有效改善锂硫电池的电化学性能。
技术实现思路
针对现有技术存在的问题,本专利技术提供一种有效、简易、低成本的自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用。本专利技术的技术方案为:一种自支撑分级孔正极材料,该自支撑分级孔正极材料由商业化三聚氰胺泡沫作为碳骨架来源,以间苯二酚、甲醛和硫脲为原料,在单一水溶液中采用低温自组装方法进行自组装将酚醛树脂填充进大孔的三聚氰胺泡沫内,经过老化、干燥和高温碳化得到自支撑氮硫共掺杂分级孔正极材料。以氮硫共掺杂多孔碳填充三聚氰胺泡沫的大孔形成分级孔材料,同时,氮硫共掺杂多孔碳能够提高固硫效果;所述自支撑分级孔正极材料的比表面积为249-580m2/g,硫元素含量0.23-1.87at.%,氮元素含量为2.03-9.71at.%,高的载硫量从3.0-12.0mg/cm2。该自支撑分级孔正极材料采用含硫电解液进行充硫,既能在充放电过程中实现微孔固硫,又能获得更大的储硫空间和更通畅的锂离子传输通道,提高电池的能量密度和倍率性能。一种自支撑分级孔正极材料的制备方法,包括以下步骤:(1)室温下,将间苯二酚、硫脲、间苯三酚、十六烷基三甲基溴化铵和硼酸加入到溶剂去离子水中,硫脲作为氮源和硫源,激烈搅拌反应4小时后超声2-4小时形成均匀混合液。所述的每150-200mL去离子水中加入2.2-10.5g间苯二酚、0.38-1.9g硫脲、0.05g-0.25g间苯三酚、0.012-0.058g十六烷基三甲基溴化铵、0.025-0.106g硼酸。(2)室温下,将三聚氰胺泡沫加入步骤(1)得到的混合液中0.5-1小时,在油浴锅中升温至70-90℃后加入甲醛,反应0.5-2.5小时。所述的步骤(1)中每150-200mL去离子水中加入5-25mL甲醛。所述的步骤(1)中每150-200mL去离子水对应加入体积规格为10×5×0.2cm的三聚氰胺泡沫。(3)将步骤(2)反应得到混合物倒进塑料杯中,继续在70-90℃下老化12小时后,将三聚氰胺泡沫混合物取出并放置在塑料板上继续在70-90℃下干燥12小时。(4)将步骤(3)干燥好的三聚氰胺泡沫混合物切成直径为8mm圆片,然后在惰性气体保护下,将温度从70-90℃升温至800-1000℃碳化2小时后得到自支撑分级孔正极材料,升温速率为2℃/min。所述的惰性气体包括氮气或者氩气。一种自支撑分级孔正极材料在锂硫电池上的应用,负载硫的方法为Li2S8电解液充硫,具体包括:(1)制备0.2M多硫化合物(Li2S8)电解液将Li2S和升华硫加入电解液中,磁力搅拌下搅拌至产生红棕色的Li2S8电解液,每20μL电解液含1.0mg硫。(2)组装电池将自支撑正极材料、聚丙烯微孔隔膜、负极锂片按顺序组装成电池并滴加适量的多硫化合物(Li2S8)电解液,载硫量在3mg/cm2-12mg/cm2。本专利技术的有益效果为:(1)原材料廉价易得,并且合成方法简单方便,无需模板的加入与去除。反应条件温和,无需苛刻的反应条件。(2)三聚氰胺泡沫为三维大孔结构,作为支撑体可以为酚醛树脂的注入提供理想的场所并且三聚氰胺泡沫在高温碳化后依然保持三维多孔结构。多孔碳的引入不仅可以填充大孔形成分级孔的三维结构,实现既能在充放电过程中微孔固硫,又能获得更大的储硫空间和更通畅的锂离子传输通道,提高电池的能量密度和倍率性能。(3)多孔的三维自支撑正极材料可以缓冲在充放电过程中巨大的体积变化,防止正极材料的破碎。并且在多孔碳表面引入氮、硫极性官能团可以进一步提高固硫效果。(4)所得正极材料具有极性的表面性质以及丰富的孔结构和离子传输通道,提高正极材料的载硫量,抑制多硫化合物的流失以及缓冲充放电过程中材料的体积变化,显著提升电极材料的稳定性以及电化学性能。附图说明图1为实施例1制备的正极材料局部的扫描电镜图;图2为实施例1制备的正极材料载硫量4mg/cm2的循环性能图;图3为实施例1制备的正极材料载硫量10.6mg/cm2的循环性能图。具体实施方式以下通过实施例进一步详细说明本专利技术涉及的自支撑正极材料的制备方法及性能,但不构成对本专利技术的任何限制。实施例1室温下,将150mL去离子水、2.22g间苯二酚、0.3865g硫脲、0.0523g间苯三酚、0.016g十六烷基三甲基溴化铵和0.0337g硼酸加入圆底烧瓶中激烈搅拌4小时并且超声2小时。将处理好的三聚氰胺泡沫加入混合液中搅拌30分钟,然后转移到在油浴锅中升温至85℃。用移液枪吸取5mL甲醛加入混合液中在85℃保持2小时。将混合物倒进塑料杯中继续在85℃下老化12小时,然后将三聚氰胺泡沫混合物捞出并放置在塑料板上继续在85℃下干燥12小时。将干燥好的三聚氰胺混合物切成直径为8mm圆片,然后在氩气保护下800℃保持2小时,升温速率为2℃/min。正极材料比表面积为249m2g-1,氮元素含量2.03at.%,硫元素含量0.23at.%。锂硫电池的制备将0.39gLi2S和1.89g升华硫放入42mL电解液中,磁力搅拌下搅拌至产生红棕色的Li2S8电解液,每20μL电解液含1.0mg硫。直接将碳化后的自支撑材料作为正极,锂片作为负极,聚丙烯微孔膜作为隔膜。多硫化合物(Li2S8)电解液作为硫的来源,加入17μL多硫化合物(Li2S8)电解液时含硫量为3.0mg/cm2;加入23μL多硫化合物(Li2S8)电解液时含硫量为4.0mg/c本文档来自技高网
...
一种自支撑分级孔正极材料、制备方法及其在锂硫电池上的应用

【技术保护点】
1.一种自支撑分级孔正极材料,其特征在于,所述的自支撑分级孔正极材料由商业化三聚氰胺泡沫作为碳骨架来源,以间苯二酚、甲醛和硫脲为原料,在单一水溶液中进行自组装,经过老化、干燥和高温碳化得到自支撑氮硫共掺杂分级孔正极材料;以氮硫共掺杂多孔碳填充三聚氰胺泡沫的大孔形成分级孔材料,同时,氮硫共掺杂多孔碳能够提高固硫效果;所述自支撑分级孔正极材料的比表面积为249‑580m2/g,硫元素含量0.23‑1.87at.%,氮元素含量为2.03‑9.71at.%,高的载硫量从3.0‑12.0mg/cm2。

【技术特征摘要】
1.一种自支撑分级孔正极材料,其特征在于,所述的自支撑分级孔正极材料由商业化三聚氰胺泡沫作为碳骨架来源,以间苯二酚、甲醛和硫脲为原料,在单一水溶液中进行自组装,经过老化、干燥和高温碳化得到自支撑氮硫共掺杂分级孔正极材料;以氮硫共掺杂多孔碳填充三聚氰胺泡沫的大孔形成分级孔材料,同时,氮硫共掺杂多孔碳能够提高固硫效果;所述自支撑分级孔正极材料的比表面积为249-580m2/g,硫元素含量0.23-1.87at.%,氮元素含量为2.03-9.71at.%,高的载硫量从3.0-12.0mg/cm2。2.权利要求1所述的自支撑分级孔正极材料的制备方法,其特征在于以下步骤:(1)室温下,将间苯二酚、硫脲、间苯三酚、十六烷基三甲基溴化铵和硼酸加入到溶剂去离子水中,硫脲作为氮源和硫源,反应4小时后超声形成均匀混合液;(2)室温下,将三聚氰胺泡沫加入步骤(1)得到的混合液中0.5-1小时后,升温至70-90℃,再加入甲醛,反应0.5-2.5小时;(3)将步骤(2)反应得到混合物在70-90℃下老化12小时后,将三聚氰胺泡沫混合物放置在塑料板上在70-90℃下干燥12小时;(...

【专利技术属性】
技术研发人员:张凤祥杨贺张旭朱伟丽范秋雨王芳
申请(专利权)人:大连理工大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1