【技术实现步骤摘要】
动态场景机器人定位建图系统及方法
本专利技术涉及机器人定位建图
,特别涉及一种动态场景机器人定位建图系统及方法。
技术介绍
机器人定位建图系统主要依赖SLAM(SimultaneousLocalizationandMapping,实时定位与地图构建)技术,该技术被视作移动智能机器人的一项重要技术,最早于1988年提出。机器人通过传感器获取周围环境的相关数据进行地图构建,然后将当前所感知到的环境特征与地图中的特征进行匹配,从而完成定位。根据传感器类型的不同,SLAM技术主要可以分为激光SLAM和视觉SLAM。由于图像在信息存储上的丰富性,以及图像对于一些更高层次工作(如语义分割与物体检测)的服务型,视觉SLAM技术在近年来被广泛研究。此外,当下的视觉SLAM技术往往都是一个完整的架构,包含了特征提取、回环检测等部分,如ORB-SLAM2,LSD-SLAM等现有的视觉SLAM技术已经在某些环境下取得了较好的试验结果。但在现有的机器人定位建图系统中,所应用的SLAM技术仍然存在着一些问题。一方面是如何让机器人的定位系统能够适应复杂多变的环境,例如环境中存在动态物体 ...
【技术保护点】
1.一种动态场景机器人视觉定位建图系统,其特征在于,包括:语义分割线程,用于采用深度学习技术实时的获取语义分割结果,以生成带有语义信息的语义图像;位姿估测线程,用于根据RGB图像获取ORB特征点,通过运动一致性检测获得运动区域,结合语义分割的信息剔除动态区域上的外点,并通过匹配剩余稳定目标的特征点得到变换矩阵,生成语义图像关键帧;稠密语义八叉树地图线程,用于根据所述语义图像的关键帧生成带语义标签的3D稠密语义八叉树地图,完成动态目标的剔除,可用于高级复杂任务;后端优化线程,用于对所述关键帧进行局部优化和关键帧筛选;回环线程,用于对局部优化和关键帧筛选的结果进行整体优化和回环检测。
【技术特征摘要】
1.一种动态场景机器人视觉定位建图系统,其特征在于,包括:语义分割线程,用于采用深度学习技术实时的获取语义分割结果,以生成带有语义信息的语义图像;位姿估测线程,用于根据RGB图像获取ORB特征点,通过运动一致性检测获得运动区域,结合语义分割的信息剔除动态区域上的外点,并通过匹配剩余稳定目标的特征点得到变换矩阵,生成语义图像关键帧;稠密语义八叉树地图线程,用于根据所述语义图像的关键帧生成带语义标签的3D稠密语义八叉树地图,完成动态目标的剔除,可用于高级复杂任务;后端优化线程,用于对所述关键帧进行局部优化和关键帧筛选;回环线程,用于对局部优化和关键帧筛选的结果进行整体优化和回环检测。2.根据权利要求1所述的动态场景机器人定位建图系统,其特征在于,所述语义分割线程与所述位姿估测线程进行数据交流,与运动一致性检测相结合剔除环境...
【专利技术属性】
技术研发人员:刘辛军,于超,乔飞,谢福贵,王智杰,
申请(专利权)人:清华大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。