当前位置: 首页 > 专利查询>南京大学专利>正文

一种基于近场定位的磁信道估计方法技术

技术编号:18898665 阅读:43 留言:0更新日期:2018-09-08 13:34
本发明专利技术公开了一种基于近场定位的磁信道估计方法,包括如下步骤:本发明专利技术中有M个发送线圈和1个接收线圈,选择3个发送线圈,给这3个发送线圈加载带有固定频率的交流信号,依次观测这3个发送线圈上的电流和电压值,利用最小二乘法估计每个发送线圈与接收线圈间的磁场强度,继而估计接收线圈的位置;利用估计的位置算出其他发送线圈与接收线圈间的互感;从而调节发送线圈上电压或电流的幅度与相位,最终使得能量以高效率传输至接收线圈。本发明专利技术使系统在满足发送端能量约束的前提下,最大化接收端的接收功率。

A magnetic channel estimation method based on near-field localization

The invention discloses a magnetic channel estimation method based on near-field positioning, which comprises the following steps: there are M transmitting coils and one receiving coil in the invention, three transmitting coils are selected, and the three transmitting coils are loaded with AC signals with fixed frequencies, and the current and voltage values on the three transmitting coils are observed successively, using the most effective method. The least square method estimates the magnetic field strength between each transmitting coil and the receiving coil, and then estimates the position of the receiving coil; uses the estimated position to calculate the mutual inductance between the other transmitting coil and the receiving coil; thus adjusts the amplitude and phase of the voltage or current on the transmitting coil, and finally makes the energy transmit to the receiving coil with high efficiency. . The invention maximizes the receiving power of the receiving terminal under the premise of satisfying the energy constraint of the transmitting terminal.

【技术实现步骤摘要】
一种基于近场定位的磁信道估计方法
本专利技术属于无线通信领域,具体涉及一种基于近场定位的磁信道估计方法。
技术介绍
随着社会进步与科技发展,我们的日常生活愈发依赖于众多个人移动设备,例如手机,平板电脑和可穿戴设备。尽管每一种设备都可以使生活变得更加方便,但是我们必须记住每天都要给这些设备充电,这是一个经常性且日益重要的负担。如果可以对这些设备进行无线充电,这样就能够减轻这种日常焦虑,也会大大减少对各种充电器的的数量。无线充电技术的主要优势在于它的便捷性和通用性,通过采用无线充电技术,公共移动设备充电站将有可能成为现实。缺点在于无线充电的效率相对于有线充电来说有些偏低,但是,移动设备对低功耗的追求为无线充电技术提供了广阔前景。现有的无线能量传输技术根据其物理机理可以分为三类:电感耦合,磁共振耦合和电磁辐射。前两类主要利用了电磁的近场非辐射特性。由于磁感效应随距离增加快速减弱,基于电感耦合的无线能量传输通常只能达到厘米级的充电距离。磁共振耦合可以实现米级的能量传输,但对线圈间的距离和对齐角度有严格要求。在采用磁波束成形的无线能量传输电路中,发送端需要先估计磁信道(由线圈间的互感系数决定),然后再根据信道调整发送线圈上的电流值。发送端的信道估计精度将直接影响接收端的能量接收效率。在多发送线圈的能量传输电路中,现有的两种磁信道估计方法包括1)逐一闭合发送线圈(同时断开其他发送线圈),根据发送线圈上的观测电压和电流值估计互感系数;2)接收端将感应电流值通过通信链路反馈给发送端,发送端根据KVL方程计算互感系数。现有的估计方法中,方法(1)需要对所有发送线圈的电压和电流进行观测,计算量较大;方法(2)需要建立通信反馈电路,受用面较窄。
技术实现思路
本专利技术的目的在于提出一种基于近场定位的磁信道估计方法,先利用在部分发送线圈上的电压和感应电流估计出接收线圈的位置,再根据接收线圈的位置以及其他发送线圈与接收线圈的相对位移,估计出该接收线圈和其他发送线圈之间的互感系数,计算量较小且不需要建立反馈链路。本专利技术采用的技术方案为一种基于近场定位的磁信道估计方法,包括如下步骤:(1)初始时从发送线圈阵列中选择3个发送线圈,加载带有固定频率的交流信号,并假设唯一的接收线圈摆放在任意位置;(2)依次观测3个发送线圈上的电流,然后观测实际加载到发送线圈上的电压,每个发送线圈的观测实施多次;(3)根据发送线圈与接收线圈之间的互感与磁场强度的理论关系,利用最小二乘法,估计每个发送线圈与接收线圈间的磁场强度,继而估计接收线圈的位置;(4)利用所述步骤(3)估计的位置以及其他发送线圈与接收线圈的相对位移,算出其他发送线圈与接收线圈间的互感,根据计算出的互感调整所有发送线圈上电压或电流的幅度与相位,计算接收功率与发送功率,进而计算能量传输效率,使调整后的能量传输效率优于调整前。进一步的,所述步骤(2)中,包括如下步骤:不同时刻的发送线圈上的电流向量是正交的:每个时刻只有一个发送线圈闭合,观测的是发送线圈上的电流,发送线圈上的总电压,以及实际加载到发送线圈上的电压,所述实际加载到发送线圈上的电压指的是总电压减去电路中电阻上的分压,每个发送线圈的观测实施多次。进一步的,所述步骤(3)中,发送线圈与接收线圈间的KVL(基尔霍夫定律)方程表述为:式中:Ir为接收线圈上的电流,Rr为接收线圈上的负载阻抗,j为复数的虚部,ω为施加在发送线圈上的交流信号的角频率,为第n个发送线圈与接收线圈间的互感,为第n个发送线圈上的电流,为第n个发送线圈上的阻抗,vn为加载到第n个发送线圈上的总电压;上面两个式子简化为:令其中,l表示第l次观测,yn(l)为第l次观测时实际加载到第n个发送线圈上的真实电压,vn(l)为第l次观测时加载到第n个发送线圈电路上的总电压,表示第l次观测时第n个发送线圈上的电流,将式子表示为:用表示第l次观测时实际加载到第n个发送线圈上的电压的观测值,将该问题描述为最小二乘法:该式表示观测值与实际值误差的2-范数平方和,式中,L为观测次数,上述式子就是估算磁场强度所利用的最小二乘法表达式。进一步的,所述步骤(3)中,互感与磁场强度之间的关系为:式中:VIND为发送线圈上的电流在接收线圈上产生的感应电压,μ0为空气的磁导率,NTX为发送线圈的匝数,NRX为接收线圈的匝数,ARX为接收线圈的面积,ARx=πb2,b是接收线圈的半径,IT为发送线圈上的电流,HINT为磁场强度;根据上式和得到磁场强度与互感之间的关系为:进一步的,所述步骤(3)中发送线圈与接收线圈间的磁场强度与接收线圈的位置的关系为:式中:a为发送线圈的半径,Δ、D分别为接收线圈相对于发送线圈的横向位移与纵向位移,m为模量,且0≤m≤1,K、E分别为第一、第二类完全椭圆积分且均与m有关。进一步的,所述步骤(4)中根据发送线圈与接收线圈间的互感调整发送线圈上的电流,调整参数为:其中:Mti,r为第i个发送线圈与接收线圈间的互感,RL为接收线圈上的负载电阻,ZL为接收线圈上的负载阻抗,mi为磁信道参数,βi为波束成形向量,*表示共轭;在多发单收无线能量传输系统中,通过磁波束成形计算出波束成形向量(β1,β2,...βi...βn),继而调整发送线圈上的电流。进一步的,所述固定频率为1MHz。本专利技术的有益效果为:本专利技术提出了基于近场定位的磁信道估计方法。先利用三个发送线圈上的互感系数的估计值估计接收线圈的位置,再利用估计得到的位置和其他发送线圈互感系数之间的关系获得接收线圈和其他发送线圈之间的互感系数。相比现有方法,该方法不需要接收线圈反馈电流值给发送线圈,也不需要逐一观测每个发送线圈上的电压和感应电流,简化了现有的磁信道估计方法。附图说明图1是本专利技术的系统框架示意图;图2是本专利技术的线圈阵列示意图;图3是5个发送线圈估计接收线圈位置的示意图;图4是不同估计精度下,发送功率与接收功率的关系图。具体实施方式下面结合附图对本
技术实现思路
作进一步详细说明。我们所考虑的无线能量传输系统如图1所示,是在近场下工作在谐振状态中的多发单收系统。如图2所示,左侧为发送线圈阵列,右侧为接收线圈。建立电路模型图时,为求简化分析,忽略线圈间的交叉耦合,只考虑两线圈间的直接耦合作用。从图上可以看出,发送线圈回路参数为L1、L2···Ln,C1、C2···Cn,R1、R2···Rn。RL为系统等效负载,V1、V2···Vn为激励电源。因为系统是工作在谐振状态下的,所以在实验中我们需要将发送与接收线圈调谐且工作频率相同为1MHz。如图3所示,我们假设共有5个发送线圈,1个接收线圈。发送线圈的半径均为0.035m,线圈间的距离为0.085m。5个发送线圈的坐标分别为(0,0,0),(8.5cm,0,0),(0,8.5cm,0),(8.5cm,8.5cm,0),(0,17cm,0)。发送线圈上的电阻Rt=2.2Ω,接收线圈上的电阻Rr=10Ω。给每个发送线圈加载幅度5V、频率1MHz的激励信号。1)闭合第n(1≤n≤3)个发送线圈,同时断开其他发送线圈。令Ir表示接收线圈上的电流,Rr表示接收线圈上的负载阻抗,表示第n个发送线圈与接收线圈间的互感,表示第n个发送线圈上的电流,Rt表示发送线圈上的阻抗,vn为加载到第n个发送本文档来自技高网
...

【技术保护点】
1.一种基于近场定位的磁信道估计方法,其特征在于,包括如下步骤:(1)初始时从发送线圈阵列中选择3个发送线圈,加载带有固定频率的交流信号,唯一的接收线圈摆放在任意位置;(2)依次观测3个发送线圈上的电流,然后观测实际加载到发送线圈上的电压,每个发送线圈的观测实施多次;(3)根据发送线圈与接收线圈之间的互感与磁场强度的理论关系,利用最小二乘法,估计每个发送线圈与接收线圈间的磁场强度,继而估计接收线圈的位置;(4)利用所述步骤(3)估计的位置以及其他发送线圈与接收线圈的相对位移,算出其他发送线圈与接收线圈间的互感,根据计算出的互感调整所有发送线圈上电压或电流的幅度与相位,计算接收功率与发送功率,进而计算能量传输效率,使调整后的能量传输效率优于调整前。

【技术特征摘要】
1.一种基于近场定位的磁信道估计方法,其特征在于,包括如下步骤:(1)初始时从发送线圈阵列中选择3个发送线圈,加载带有固定频率的交流信号,唯一的接收线圈摆放在任意位置;(2)依次观测3个发送线圈上的电流,然后观测实际加载到发送线圈上的电压,每个发送线圈的观测实施多次;(3)根据发送线圈与接收线圈之间的互感与磁场强度的理论关系,利用最小二乘法,估计每个发送线圈与接收线圈间的磁场强度,继而估计接收线圈的位置;(4)利用所述步骤(3)估计的位置以及其他发送线圈与接收线圈的相对位移,算出其他发送线圈与接收线圈间的互感,根据计算出的互感调整所有发送线圈上电压或电流的幅度与相位,计算接收功率与发送功率,进而计算能量传输效率,使调整后的能量传输效率优于调整前。2.根据权利要求1所述的一种基于近场定位的磁信道估计方法,其特征在于,所述步骤(2)中,包括如下步骤:不同时刻的发送线圈上的电流向量是正交的:每个时刻只有一个发送线圈闭合,观测的是发送线圈上的电流,发送线圈上的总电压,以及实际加载到发送线圈上的电压,所述实际加载到发送线圈上的电压指的是总电压减去电路中电阻上的分压,每个发送线圈的观测实施多次。3.根据权利要求1所述的一种基于近场定位的磁信道估计方法,其特征在于,所述步骤(3)中,发送线圈与接收线圈间的KVL方程表述为:式中:Ir为接收线圈上的电流,Rr为接收线圈上的负载阻抗,j为复数的虚部,ω为施加在发送线圈上的交流信号的频率,为第n个发送线圈与接收线圈间的互感,为第n个发送线圈上的电流,为第n个发送线圈上的阻抗,vn为加载到第n个发送线圈上的总电压;上面两个式子简化为:令其中,l表示第l次观测,yn(l)为第l次观测时实际加载到第n个发送线圈上的真实电压,vn(l)为第l次观测时...

【专利技术属性】
技术研发人员:唐岚陆建峰明强
申请(专利权)人:南京大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1