一种基于最小单纯形融合特征学习的信息属性识别方法技术

技术编号:18784420 阅读:72 留言:0更新日期:2018-08-29 07:11
本发明专利技术公开一种基于最小单纯形融合特征学习的信息属性识别方法,包括:S1、采集多个数据样本并定义概念标签;S2、将每个数据样本分割为多个数据样本块;S3、对每个数据样本块进行特征提取并对应为多个特征向量;S4、向属于不同数据样本的具有相同含义的数据样本块标记同一个概念标签,建立特征向量与概念标签的关联,得到关联矩阵;S5、进行最小单纯形融合特征学习,得到各概念对应的单纯形融合特征;S6、进行多特征融合权重学习,建立含有表示同一概念的不同单纯形融合特征的权重的权重矩阵;S7、基于权重矩阵和单纯形融合特征进行信息属性识别。本发明专利技术能够对原始数据细粒度的概念标签进行学习,避免了单标签的不准确问题。

【技术实现步骤摘要】
一种基于最小单纯形融合特征学习的信息属性识别方法
本专利技术涉及计算机
更具体地,涉及一种基于最小单纯形融合特征学习的信息属性识别方法。
技术介绍
近年来,人工智能技术快速发展,人类对信息进行智能处理的需求不断增加,人们不再满足于对每个数据样本得到一种笼统的分类标签,而是希望从原始数据样本中挖掘更多的和更细粒度的信息。因此,在计算机领域对模式分类问题的研究逐步深入,多标签、多视角、多任务学习成为该领域的研究热点。传统的模式分类方法包括支持向量机法、近邻法、贝叶斯法等,结合人工设计的特征提取方法,如梯度特征、颜色特征、边缘特征等,可以解决一般的分类识别问题,即一个样本对应一种分类标签,但在解决多标签分类问题中遇到较多困难。首先,对样本直接进行特征提取往往得到样本全局的信息,无法对样本局部信息进行独立处理;其次,单一特征往往具有局限性,一种人工设计特征通常关注于样本某些方面的特性,因此单一特征通常只对样本某些特性的变化敏感;此外,数据噪声也是影响分类器训练与决策过程的一个重要因素,使用单一特征受噪声影响较大。解决上述问题的一种方法为采用特征融合方法,特征融合属于信息融合方法中的一本文档来自技高网...

【技术保护点】
1.一种基于最小单纯形融合特征学习的信息属性识别方法,其特征在于,包括:S1、采集目标领域的多个数据样本,为各数据样本所关联的概念定义对应的概念名称并将每个概念名称分别对应为一个概念标签,得到概念标签集合;S2、采用数据分割算法将每个数据样本分割为多个数据样本块;S3、采用多种特征提取算法对每个数据样本块进行特征提取,将每种特征分别对应为一个特征向量,得到多个特征向量;S4、向属于不同数据样本的具有相同含义的数据样本块标记概念标签集合中的同一个概念标签,建立每个数据样本块所对应的所有特征向量与该数据样本块标记的概念标签的关联,得到数据样本块与概念标签之间的关联和的特征向量与概念标签之间的关联的...

【技术特征摘要】
1.一种基于最小单纯形融合特征学习的信息属性识别方法,其特征在于,包括:S1、采集目标领域的多个数据样本,为各数据样本所关联的概念定义对应的概念名称并将每个概念名称分别对应为一个概念标签,得到概念标签集合;S2、采用数据分割算法将每个数据样本分割为多个数据样本块;S3、采用多种特征提取算法对每个数据样本块进行特征提取,将每种特征分别对应为一个特征向量,得到多个特征向量;S4、向属于不同数据样本的具有相同含义的数据样本块标记概念标签集合中的同一个概念标签,建立每个数据样本块所对应的所有特征向量与该数据样本块标记的概念标签的关联,得到数据样本块与概念标签之间的关联和的特征向量与概念标签之间的关联的关联矩阵;S5、基于关联矩阵,进行最小单纯形融合特征学习,得到各概念对应的单纯形融合特征;S6、进行多特征融合权重学习,建立含有表示同一概念的不同单纯形融合特征的权重的权重矩阵;S7、基于权重矩阵和单纯形融合特征进行信息属性识别。2.根据权利要求1...

【专利技术属性】
技术研发人员:刘渭滨邹智元邢薇薇赵雅昕郑伟
申请(专利权)人:北京交通大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1