当前位置: 首页 > 专利查询>清华大学专利>正文

一种颗粒有机物在线富集解析装置及其使用方法制造方法及图纸

技术编号:18656182 阅读:32 留言:0更新日期:2018-08-11 13:43
本发明专利技术涉及一种颗粒有机物在线富集解析装置及其使用方法,所述装置包括热脱附单元、耐高温四通阀、毛细管捕集柱、半导体冷阱、电子三通阀、气相色谱柱等组件。颗粒有机物经高温热脱附单元,先后通过常温毛细管捕集柱和半导体冷阱捕集并排空,捕集的有机物随后通过阀切换反向进样,半导体冷阱捕集的低沸点组分首先热解析释放,毛细管捕集柱捕集的高沸点组分随着气相色谱柱温箱程序升温逐渐解析进入气相色谱柱分离检测。本发明专利技术通过增加排空设计,提高热脱附流量,减少热脱附时间,提高热脱附效率,避免热脱附样品直接进入色谱柱而引起色谱柱和检测单元的累积性污染;利用常温毛细管捕集柱捕集高沸点组分和低温冷阱捕集低沸点组分的优势,分段捕集低沸点和高沸点有机物,提高有机物的捕集和释放效率。

An on-line enrichment analysis device for particulate organic matter and its use method

The invention relates to an on-line enrichment and analysis device for granular organic matter and its application method. The device comprises a thermal desorption unit, a high temperature resistant four-way valve, a capillary trap column, a semiconductor cold trap, an electronic three-way valve, a gas chromatography column, etc. Particulate organic matter is trapped and emptied by capillary trap column and semiconductor cold trap at room temperature. The trapped organic matter is then injected reversely by valve switching. The low boiling point components trapped by semiconductor cold trap are first released by thermal analysis. The high boiling point components trapped by capillary trap column follow the column temperature of gas chromatography. The temperature is gradually resolved into the gas chromatographic column for separation and detection. The invention can improve the thermal desorption flow rate, reduce the thermal desorption time, improve the thermal desorption efficiency, avoid the cumulative pollution of the chromatographic column and the detection unit caused by the direct entry of the thermal desorption sample into the chromatographic column, and utilize the normal temperature capillary trap column to capture the high boiling point component and the low temperature cold trap to capture the low boiling point component. Potential, segmented capture of low boiling point and high boiling point of organic matter, improve the efficiency of organic matter capture and release.

【技术实现步骤摘要】
一种颗粒有机物在线富集解析装置及其使用方法
本专利技术属于环境监测
,具体涉及一种颗粒有机物在线富集解析装置及其使用方法。
技术介绍
大气颗粒物中的有机物是其主要组成之一,含量可占其总量的20%-80%。大气颗粒物中的有机物成分相当复杂,浓度范围跨度大,物理化学性质各异,且在大气环境中时刻发生动态化学演化。因此,在线测量技术对于认知颗粒物中有机物在大气环境中的动态变化规律具有重要意义。颗粒有机物分子组成的在线测量技术存在相当的难度,国内外的研究主要基于美国加州大学Goldstein课题组的Williams等人(2006年)开发的热脱附气溶胶在线气相色谱测量系统(TAG系统)。因热脱附时间长,流量大,通常情况下,高温热脱附有机气体需要先通过冷阱捕集后再释放进入气相色谱(GC)分析。鉴于颗粒有机物沸点相对挥发性有机物(VOCs)较高,主要以半挥发(SVOC)、低挥发有机物(LVOC)为主,以及大气在线观测便携式的需求,目前已报道的TAG系统主要使用毛细柱捕集热脱附有机气体。Williams等开发的TAG系统中,热脱附有机气体被直接引入置于45℃温箱中的色谱柱,并在柱前端冷凝富集。2013年报道的SV-TAG利用一段15-50厘米金属毛细管作为捕集单元,温度40℃,并加入了排空设计,能够使用较高的热脱附流量以提高热脱附效率。专利申请号为CN201610847023.5的石英滤膜TAG,热脱附后的有机气体先被低温(-40℃)半导体冷阱捕集,后加热释放进入GC色谱柱分析,提高了低沸点组分的捕集效率。目前TAG系统中关于热脱附气体的捕集仍有不足:样品直接进入GC分析柱方式因受到柱长和检测器的限制,热脱附流量不高且时间较长,热脱附效率较低,而且长期连续观测会污染色谱柱和检测器,影响色谱柱和检测器的使用寿命;常温条件下,毛细柱对低沸点组分的捕集效率不高;半导体冷阱对高沸点组分的释放需要更长的加热时间和温度,严重影响捕集柱的寿命,存在高沸点组分解析效率低和残留问题。事实上,预浓缩是VOC的在线富集解析的常用方式之一,多采用超低温或吸附剂等富集方式。同时,为了更全面地捕集VOC,目前商业化和在研多采用多级冷阱、混合吸附剂等方式来分段捕集VOC。这类富集解析方式主要针对挥发性有机物,将其应用于颗粒物中半挥发、低挥发有机物的在线富集解析还存在一些问题。例如,低温冷阱对于高沸点组分释放不完全,有残留问题,提高解析效率需要增加解析温度和时间,会导致捕集管的寿命缩短;商用冷阱多采用超低温制冷、电子制冷和液氮制冷方式,体积较大,需要消耗制冷剂,难以满足观测的便携式需求;吸附剂通常能够选择性地吸附某类有机物,但连续吸附基质复杂的样品会引起严重的污染问题,同时,这类吸附管的更换往往也相当繁琐。为避免颗粒物热脱附过程中所引起的色谱柱/检测单元的污染、残留等问题,本专利技术开发了一种简单实用的颗粒有机物在线富集解析装置及方法。
技术实现思路
为解决上述问题,本专利技术旨在提供一种颗粒有机物在线富集解析装置,简单利用色谱柱温箱、耐高温四通阀和半导体冷阱,通过排空设计,针对轻高沸点组分分别进行常温和低温冷阱的分段捕集,减少热脱附过程中对色谱柱和检测单元的污染,提高色谱柱和检测单元的运行寿命;提高样品热脱附效率和冷阱捕集效率,提高系统对轻高沸点组分检测的灵敏度;装置简单,更换方便。具体技术方案如下。一种颗粒有机物在线富集解析装置,包括:热脱附单元1、耐高温四通阀2、毛细管捕集柱3A、半导体冷阱4、电子三通球阀5、气相色谱柱3B等部件;所述热脱附单元1与耐高温四通阀2的A相连,通过阀切换,将从热脱附单元1热脱附的高温气体传输至毛细管捕集柱3A和半导体冷阱4富集;耐高温四通阀2的B与毛细管捕集柱3A相连,毛细管捕集柱置于气相色谱柱温箱3中,富集温度30-40℃,主要捕集高沸点组分;毛细管捕集柱3A与半导体冷阱4(0到-40℃)相连,后者富集未能被毛细管捕集柱3A捕获的低沸点组分;半导体冷阱4与电子三通球阀5的B相连;电子三通球阀5的C排空,5的BC用于控制排空;电子三通球阀5的A与压力流量控制单元A6的EPC或AUX相连,用于反向解析进样(5的AB);耐高温四通阀2的C与气相色谱柱3B相连;耐高温四通阀2的D与压力流量控制单元B7的EPC或AUX相连,后者为气相色谱柱3B供气,反向吹扫热脱附单元1与耐高温四通阀2间传输线的残留,并为耐高温四通阀2提供惰性保护,防止其被氧气氧化。本专利技术还提供了上述装置的使用方法,该装置连续自动切换,切换过程为:热脱附/富集模式-反向解析模式-反吹模式;在热脱附/富集模式下,耐高温四通阀的AB连通,热脱附单元中热脱附的高温气体(2-150ml/min)通过耐高温四通阀AB进入毛细管捕集柱冷凝捕集,未被捕集的组分流入半导体冷阱被富集,半导体冷阱也捕集不了的组分通过电子三通球阀的BC排空;同时,耐高温四通阀的CD连通,压力流量控制单元B向气相色谱柱提供载气,2ml/min;热脱附/富集模式结束后进入反向解析模式,电子三通球阀处于AB位置,与压力流量控制单元A相连,后者向半导体冷阱和毛细管捕集柱输送解析气体氦气或氮气,并作为气相色谱分析载气;耐高温四通阀的BC连通,解析出的组分进入气相色谱柱,被分离检测;半导体冷阱加热释放被低温捕集的低沸点组分,低沸点组分先进入气相色谱柱被分离检测;气相色谱柱温箱开始程序升温,逐渐将毛细管捕集柱中捕集的高沸点组分热解析并通过气相色谱柱分离检测;同时,耐高温四通阀的AD连通,压力流量控制单元B向热脱附单元反吹,排出残留的热脱附组分并保护耐高温四通阀;待测量的沸点最高的组分流出毛细管捕集柱后,为了避免更重的组分污染色谱柱和检测器,引入反吹模式去除干扰物质,电子三通球阀处于AB位置,与压力流量控制单元A相连,耐高温四通阀的AB连通,毛细管捕集柱中的残留经过热脱附单元排空,同时,耐高温四通阀的CD连通,压力流量控制单元B向气相色谱柱提供载气。进一步,所述热脱附单元1与耐高温四通阀2间的传输线在系统在线采样、降温过程中30-160℃,热脱附过程中加热至305℃。进一步,耐高温四通阀2,耐高温四通阀2与毛细管捕集柱3A间及耐高温四通阀2与色谱柱3B间的传输线均保持恒温305℃。进一步,所述毛细管捕集柱3A与四通阀2B通过惰性化处理的不锈钢金属管线、金属两通相连,与半导体冷阱4直接连接,易于连接和更换。进一步,所述毛细管捕集柱3A优选石英毛细管柱,优选内径0.25毫米,长度1米,利用色谱柱温箱控温。进一步,半导体冷阱4的冷区温度0到-40℃,与毛细管捕集柱3A相连的热区温度40到200℃。进一步,热脱附单元的流量先低后高(2-150ml/min),先将低沸点组分捕集在半导体冷阱的低温区,然后增大流量热脱附高沸点组分。进一步,所述热脱附单元1、耐高温四通阀2、气相色谱3、半导体冷阱4、电子三通球阀5分别进行电气连接,通过计算机实时控制各部件的开启、关闭,并实时记录采样数据及结果,实现装置的在线和自动化运行。本专利技术提供的一种颗粒有机物在线富集解析装置具有以下有益效果:通过增加排空设计,提高热脱附流量,减少热脱附时间,提高热脱附效率,避免热脱附样品直接进入色谱柱而引起色谱柱和检测单元的累积性污染;利用常温冷阱本文档来自技高网
...

【技术保护点】
1.一种颗粒有机物在线富集解析装置,其特征在于,包括热脱附单元、耐高温四通阀、毛细管捕集柱、半导体冷阱、电子三通球阀、气相色谱柱;所述热脱附单元与耐高温四通阀的A相连,通过阀切换,将从热脱附单元热脱附的高温气体传输至毛细管捕集柱和半导体冷阱富集;所述耐高温四通阀的B与毛细管捕集柱相连;所述毛细管捕集柱置于气相色谱柱温箱中;所述半导体冷阱与毛细管捕集柱相连,富集未能被毛细管捕集柱捕获的低沸点组分;所述电子三通球阀的B与半导体冷阱相连;所述电子三通球阀的C排空,BC联通用于控制排空;所述电子三通球阀的A与压力流量控制单元A的EPC或AUX相连,后者用于反向解析进样;所述气相色谱柱与耐高温四通阀的C相连;所述耐高温四通阀的D与压力流量控制单元B的EPC或AUX相连,后者用于为气相色谱柱供气,反向吹扫热脱附单元与耐高温四通阀间传输线的残留,并为耐高温四通阀提供惰性保护,防止其被氧气氧化。

【技术特征摘要】
1.一种颗粒有机物在线富集解析装置,其特征在于,包括热脱附单元、耐高温四通阀、毛细管捕集柱、半导体冷阱、电子三通球阀、气相色谱柱;所述热脱附单元与耐高温四通阀的A相连,通过阀切换,将从热脱附单元热脱附的高温气体传输至毛细管捕集柱和半导体冷阱富集;所述耐高温四通阀的B与毛细管捕集柱相连;所述毛细管捕集柱置于气相色谱柱温箱中;所述半导体冷阱与毛细管捕集柱相连,富集未能被毛细管捕集柱捕获的低沸点组分;所述电子三通球阀的B与半导体冷阱相连;所述电子三通球阀的C排空,BC联通用于控制排空;所述电子三通球阀的A与压力流量控制单元A的EPC或AUX相连,后者用于反向解析进样;所述气相色谱柱与耐高温四通阀的C相连;所述耐高温四通阀的D与压力流量控制单元B的EPC或AUX相连,后者用于为气相色谱柱供气,反向吹扫热脱附单元与耐高温四通阀间传输线的残留,并为耐高温四通阀提供惰性保护,防止其被氧气氧化。2.根据权利要求1所述的装置,其特征在于,所述耐高温四通阀与毛细管捕集柱间及耐高温四通阀与气相色谱柱间的传输线均惰性化处理并保持高温305℃。3.根据权利要求1所述的装置,其特征在于,所述毛细管捕集柱为石英毛细管柱,内径0.25毫米,长度1米,利用气相色谱柱温箱控温。4.根据权利要求1所述的装置,其特征在于,所述热脱附单元、耐高温四通阀、气相色谱柱温箱、半导体冷阱、电子三通球阀分别进行电气连接,通过计算机实时控制各部件的开启、关闭,并实时记录采样数据及结果,实现所述装置的在线和自动化运行。5.根据权利要求1所述装置的使用方法,其特征在于,所述装置连续自动切换,切换过程为:热脱附/富集模式-反向解析模式-反吹模式;在热脱附/富集模式下,耐高温四通阀的AB连通,热脱附单元中热脱附的高温气体通过耐高温四通阀AB进入毛细管捕集柱冷凝捕集,未...

【专利技术属性】
技术研发人员:蒋靖坤任海霞薛墨安肇锦
申请(专利权)人:清华大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1