具有提高刀刃韧度并减小摩擦的纳米晶CVD涂层的涂覆刀体制造技术

技术编号:1809143 阅读:213 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了一种具有Ti(C,N,O)纳米晶CVD涂层的涂覆刀体。涂层用MTCVD工艺形成,并且气体混合物的一部分为CO、CO↓[2]或其混合物。在涂覆过程中采用这种添加剂可以得到小得多的、等轴粒径。另外,还公开了形成涂覆刀体的方法。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种涂覆有纳米晶涂层的涂覆刀体及其制备方法。金属切削中采用涂覆刀体是广为人知的。通常,刀体由硬质合金、金属陶瓷或陶瓷制得,而涂层则是一种或多种第ⅥB族金属的碳化物、氮化物、氧化物或其混合物。例如,涂覆有TiC层、Al2O3层和TiN层的硬质合金刀体被广泛采用。涂层的组成和厚度可以有多种变化,进行涂覆的方法也有多种,如CVD法(化学气相淀积法)和PVD法(物相气相淀积法),其中CVD法可以在约900℃至1250℃的常规温度下进行,也可以在约700℃至900℃的中温下进行,即中温化学气相淀积法(MTCVD)。CVD法的TiC涂层一般由等轴粒子构成,粒径为约0.5微米至1.0微米。CVD法的TiN涂层以及MTCVD法的Ti(C,N)涂层则由柱状粒子构成,粒子的长度接近涂层的厚度。CVD法涂层的形貌可用工艺条件调控稍作改善,但MTCVD法涂层很难用常规的工艺调控进行改善。一般来说,多晶材料的硬度(也包括涂层)服从Hall-Petch方程H=H°+C/√d,式中H是多晶材料的硬度,H°是单晶的硬度,C是材料常数,d是粒径。从该方程式可以看到,降低粒径,可以提高材料的硬度。然而,常规CVD涂层和MTCVD涂层中粒径至少为0.5微米或更高。MTCVD涂层更是具有大柱状粒子的特点,其晶粒长度接近涂层的厚度。美国再公告专利31,526中指出,在形成Al2O3涂层时,使用添加剂如四价钛、铪和/或锆的化合物,可以促使形成一种特定的相态。另外,美国专利4,619,886中公开了使用选自硫、硒、碲、磷、砷、锑、铋和其混合物的添加剂,可以提高CVD涂覆Al2O3的生长速率,同时还会促使形成均匀的涂层。CO2也同样被用于部分涂覆工艺中。具体地讲,它被用于氧化工艺中,在这类工艺中,CO2与H2反应形成H2O,即氧化性的气体。如可参阅美国专利5,827,570。本专利技术的目的之一就是要避免或减轻现有技术中的问题。本专利技术的另一个目的就是提供一种涂层,该涂层具有显著较小的粒径和伴生硬度。一方面,本专利技术提供了一种具有涂层的涂覆刀体,所说的涂层为粒径25nm或更小的Ti(C,N,O)涂层。另一方面,本专利技术提供了一种制备涂覆有Ti(C,N,O)的刀体的方法,其包括将刀体与含有卤化钛、氮化合物、碳化合物、还原剂以及CO和/或CO2的添加剂的气体接触,使得足以形成粒径小于25nm的Ti(C,N,O)。已经发现,对于MTCVD法涂覆的涂层,在MTCVD工艺中,向涂覆气体中加入少量的CO或CO2或其混合物、优选CO作添加剂,可以使涂层的粒径变得小得多,并形式等轴形状的粒子。为了使所得涂层的粒径在25nm数量级或更低,优选10nm或更低,MTCVD气体混合物中的CO量应当占气体混合物总量的约5%至10%,优选为约7%至9%。如果采用CO2,则其应当占气体混合物总量的约0.5%至1.0%,优选0.4%至0.6%。CO和/或CO2添加剂可以在反应的任何时候加入,加入方式可以是连续的,也可以是间断的。如果使用CO2和/或CO/CO2混合物,工匠们就应当小心,以避免形成Magnelli相。尽管上述添加剂可以加入到形成各种涂层的反应物气体混合物中,但发现其在形成Ti(C,N,O)涂层时特别有用,而在此如果没有上述添加剂,则会形成Ti(C,N)涂层。在Ti(C,N,O)涂层中,各组份的比例一般如下O/Ti,0.1-0.40,优选0.20-0.30;C/Ti,约0.40-0.60,优选0.50-0.60;N/Ti,约0.15-0.35,优选0.20-0.30。虽然本专利技术的方法优选用于形成Ti(C,N,O)涂层,但也可以用于涂覆Ti(C,O)涂层,而此处如果没有上述添加剂,则会形成TiC涂层。纳米晶层既可以作为最外层涂覆,也可以作为内层涂覆。从下面可以看到,纳米晶涂层更为坚硬,但在较高温度下(较高的切削速度下)晶粒边界发生滑动,导致塑性变形。由于这种涂层的粒径极小,其表面光滑度增加,摩擦系数减小。因而,纳米晶涂层显然可以起到降低摩擦/润滑层的作用,并应当沉积在现有涂层结构的最顶层上。然而,具有交替纳米晶层的MTCVD/CVD的涂层(在MTCVD/CVD工艺中使用添加开关ON/OFF,有可能形成MTCVD纳米层结构/纳米晶层)应当显示出众的/新的性质。纳米晶层可以与其它的涂层材料一起使用,如与氧化铝(κ或α)或其它氧化物或TiN形成由MTCVD层和纳米粒子层构成的纳米层结构。当优选使用主要为Ti(C,N)的涂层时,插入在MTCVD涂层中的非常薄的纳米晶层可以用来控制MTCVD涂层的粒径。如果纳米晶层用作最外层,那么它可以涂覆于Al2O3层上,而Al2O3层本身又可以涂覆于一层或多层的其它层之上,例如TiC层之上。Al2O3层可以是α-相、κ-相,或者是α-相和κ-相Al2O3的混合物。纳米晶层也可以涂覆于TiN层之上。类似地,如果纳米晶层用作内层时,可以用其它的层如Al2O3、TiC、Ti(C,N),TiN或类似物的层涂覆于纳米晶层之上。这些各种其它的内层和/或外层可以用CVD法、MTCVD法或PVD法涂覆。等轴的意思是指粒子在所有的方向上具有基本上相同的尺寸。另外,结合下面的实施例来说明本专利技术。这些实施例只是用来解释本专利技术,然而应当理解,本专利技术并非局限于这些实施例的特定细节。实施例1在这种情况下使用CO添加剂。根据表1中的工艺数据,在65毫巴的压力下,制备下列五个实验涂层(叫做涂层1,2,3,4和5)。表1 粒径涂层1-5用透射电子显微镜(TEM)进行研究,以便搞清CO的添加对粒径的影响。看起来很清楚,添加CO,使得由大柱状晶粒构成的MTCVD Ti(C,N)涂层的微观结构发生强烈细化。当CO添加量达到约8%时,其结构变为纳米晶。X-射线衍时(XRD)用XRD研究涂层1、3、4和5。晶粒细化可清楚地用线展宽来表示。表2中给出了线展宽的数据及观察到的粒径。表2 *半峰宽度,由单一MTCVD Ti(C,N)涂层的220反射面的Kα2分解高斯线测得。**柱状晶粒的平均宽度。注意其长度通常在涂层厚度的数量级。***柱状晶粒和等轴晶粒的混合物。没有发现接近涂层厚度的柱状晶粒。参比样的半峰宽度为B0。纳米晶涂层参比样的半峰宽度为Bn(n=4.0,6.0,8.0)。线展宽为Bn/B0。线展宽可以用绝对值(°2θ)来定义,也可以用相对值来定义。线展宽应当为0.30-0.60°2θ,优选为0.33-0.4°2θ,或者应当为2.0-4.0,优选为2.2-2.7(相对值,参比样为MTCVD Ti(C,N))。在这种情况下,线展宽两种定义的特征是涂层处于轻微的拉伸应力下。因而线展宽只与粒径有关,而与压缩应力无关,如在PVD涂层中较小的粒径所出现的压缩压力。硬度涂层1,3,4,5的硬度用纳米硬度计技术测量。结果列于表3中。表3 涂层化学(掺入氧)实验表明,通过掺合,可以在涂层中掺入相当量的氧,见表4。很清楚涂层中碳组份是主要的,其不受CO添加量增加的影响。氮含量减小,而氧组份含量急剧增加。不过没有发现钛的氧化物(Magnelli相)。涂层的化学计量从0.88增至1.03。表4 摩擦用栓钉盘(pin-on disk)技术测定钢(SS1672)和实验涂层之间的摩擦系数本文档来自技高网...

【技术保护点】
一种具有涂层的涂覆刀体,所述的涂层是粒径为25nm或更低的Ti(C,N,O)涂层。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:萨卡里鲁皮伦纳特卡尔松
申请(专利权)人:塞科机床公司
类型:发明
国别省市:SE[瑞典]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利