一种基于热力图和关键点回归的深度车牌检测方法技术

技术编号:18084502 阅读:60 留言:0更新日期:2018-05-31 12:52
一种基于热力图和关键点回归的深度车牌检测方法,包括离线学习阶段和检测阶段,离线学习阶段包括以下四个步骤:(1)设计网络深度:设计深度学习网络结构,将输入图像调整统一,对图像进行第一层卷积和激活函数操作,再进行第二层卷积、激活函数和池化操作,然后进行第三层卷积、激活函数和池化操作,然后形成多任务分支,一个分支通过一个卷积层学习车牌坐标,另一个分支通过另一个卷积层学习车牌热力图;(2)准备训练样本集:获取一批车头或车尾图像作为离线学习的样本集,样本总类数越多,训练效果越好,并对样本大小统一化;本方法利用离线训练的深度网络表征目标,达到快速、稳定的对目标物进行车牌检测的目的。

【技术实现步骤摘要】
一种基于热力图和关键点回归的深度车牌检测方法
本专利技术涉及智能交通领域,一种基于热力图和关键点回归的深度车牌检测方法。
技术介绍
近年来,基于视频的车牌检测识别技术在智能交通领域的重要性不断提升,车牌检测识别准确率是判断车牌识别技术发展的重要指标。车牌识别技术可以应用于小区停车管理系统、重要交通枢纽处的“电子眼”系统、高速公路车速管理系统等多个领域,对公共安全和国家发展带来了很多方便和保障。随着交通环境的不断复杂化,已出现一些车牌识别相关产品渐渐无法满足用户实时性的需求。传统的车牌识别系统主要流程是:输入图像,对图像进行降噪、灰度化,边缘检测等预处理,然后根据提取的边缘特征进行车牌定位,最后分割字符和识别。但在复杂的环境中采集到的图像,车牌的漏检和误检率都比较高,很难高效的、准确的完成车牌的识别。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习方法模型不仅正确率较高,在光照变化和噪声污染下的准确性和稳定性较好,能够有效降低车标识别的错误率,同时也避免了需要消耗大量的时间进行人工特征提取的工作,使得在线检测运算效率大大提升。但是对于一些本文档来自技高网...
一种基于热力图和关键点回归的深度车牌检测方法

【技术保护点】
一种基于热力图和关键点回归的深度车牌检测方法,包括离线学习阶段和检测阶段,其特征在于:离线学习阶段包括以下四个步骤:(1)设计网络深度:设计深度学习网络结构,将输入图像调整统一,对图像进行第一层卷积和激活函数操作,再进行第二层卷积、激活函数和池化操作,然后进行第三层卷积、激活函数和池化操作,然后形成多任务分支,一个分支通过一个卷积层学习车牌坐标,另一个分支通过另一个卷积层学习车牌热力图;(2)准备训练样本集:获取一批车头或车尾图像作为离线学习的样本集,样本总类数越多,训练效果越好,并对样本大小统一化;(3)进行样本标注:本方法需要进行两种信息的标注,一种是车牌原图中的车牌坐标,另一种是车牌热力...

【技术特征摘要】
1.一种基于热力图和关键点回归的深度车牌检测方法,包括离线学习阶段和检测阶段,其特征在于:离线学习阶段包括以下四个步骤:(1)设计网络深度:设计深度学习网络结构,将输入图像调整统一,对图像进行第一层卷积和激活函数操作,再进行第二层卷积、激活函数和池化操作,然后进行第三层卷积、激活函数和池化操作,然后形成多任务分支,一个分支通过一个卷积层学习车牌坐标,另一个分支通过另一个卷积层学习车牌热力图;(2)准备训练样本集:获取一批车头或车尾图像作为离线学习的样本集,样本总类数越多,训练效果越好,并对样本大小统一化;(3)进行样本标注:本方法需要进行两种信息的标注,一种是车牌原图中的车牌坐标,另一种是车牌热力图,车牌位置坐标采用人工标注获取,由4个值表示(x,y,w,h),分别表示车牌左上角坐标以及车牌宽和高,这些值都需要进行归一化至(0,1),车牌图像热力图根据车牌坐标自动生成,热力图大小为26×26,新建一个26×26的标注矩阵,初始化为0,在(26x,26y,26w,26h)区域表示车牌位置标注为1,输入的图像涵盖车牌各种位置及车牌种类,使训练的网络能适应复杂情况;(4)进行训练:使用步骤(1)中描述的网络结构对步骤(3)中得到的训练样本集进行多任务训练;...

【专利技术属性】
技术研发人员:魏丹王子阳罗一平陈浩
申请(专利权)人:上海工程技术大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1