基于光线跟踪算法的高帧频可见光图像模拟方法及系统技术方案

技术编号:18051198 阅读:55 留言:0更新日期:2018-05-26 08:46
本发明专利技术公开一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统,该方法包括:第一步、完成飞行器的三维网格模型建模并对模型进行区域剖分;第二步、通过坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法计算飞行器的可见表面的可见光散射特性并存储;第四步、根据实时接收的观测信息及光照信息对可见光散射特性进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据可见光散射特性确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。本发明专利技术可同时保证可见光散射特性仿真的真实性与高帧频仿真的实时性。

【技术实现步骤摘要】
基于光线跟踪算法的高帧频可见光图像模拟方法及系统
本专利技术涉及实时可见光图像模拟方法。更具体地,涉及一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统。
技术介绍
飞行器的可见光特性与红外特性的模拟原理有很大差别,散射特性计算是可见光图像模拟仿真的基础。飞行器表面的光散射特性与其表面材料特性、几何外形、飞行状态以及观测状态等有关,存在复杂遮挡关系及高光反射特性等复杂且瞬态变化的特性,计算十分复杂,目前普遍采用的方法是基于图形引擎的可见光图像渲染方法,但该方法在高帧频状态下无法保证散射特性仿真的逼真度,因此急需解决现有技术中存在的复杂可见光散射特性高帧频高置信度仿真瓶颈,可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。因此,需要提供一种提升高帧频动态可见光图像模拟的仿真置信度的基于光线跟踪算法的高帧频可见光图像模拟方法及系统。
技术实现思路
本专利技术的目的在于提供一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统,解决了现有方法的可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。为达到上述目的,本专利技术采用下述技术方案:一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。优选地,所述第一步至所述第三步均在离线状态下执行。优选地,所述第一步的具体过程为:依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标。一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;可见光图像模拟模块,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。优选地,所述模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。本专利技术的有益效果如下:本专利技术所述技术方案通过离线计算方式,采用高置信度光线跟踪算法计算光线散射特性,通过预处理加载及动态查询插值的方式实现了高置信度计算数据和高帧频动态图像仿真的合理结合,保证了复杂可见光散射特性仿真的真实性。另外,仿真过程不需要计算目标特性,保证了高帧频仿真的实时性。附图说明下面结合附图对本专利技术的具体实施方式作进一步详细的说明。图1示出基于光线跟踪算法的高帧频可见光图像模拟方法的流程图。图2示出基于光线跟踪算法的高帧频可见光图像模拟系统的示意图。具体实施方式为了更清楚地说明本专利技术,下面结合优选实施例和附图对本专利技术做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本专利技术的保护范围。如图1所示,本专利技术公开的一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。其中,第一步至第三步均在离线状态下执行;第一步的具体过程为:依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格。之后,根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标,方便后续计算。第三步的具体过程为:为了提高求值效率,采用空间剖分技术将飞行器空间剖分成一系列互不重叠有序排序的空间网格;另外,为了进一步提高效率,采用逆向光线跟踪技术,即依据光照关系从观测方进行光线追迹,进而避免对不落入探测系统的光线的追迹。基于光线跟踪算法并根据目标坐标系下的光照角度,计算得到飞行器在不同观测角度及观测距离下每个面片的光学散射特性,不同观测角度及观测距离下每个面片的光学散射特性进行编码存储,得到散射特性数据文件组,供动态图像模拟时调用。第四步的具体过程为:为保证数据调度效率,在图像模拟初始化阶段加载离线计算的散射特性数据文件组。在动态图像高帧频模拟过程中,实时接收观测信息及光照信息,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。如图2所示,本专利技术公开的一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维本文档来自技高网...
基于光线跟踪算法的高帧频可见光图像模拟方法及系统

【技术保护点】
一种基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,该方法包括如下步骤:第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。

【技术特征摘要】
1.一种基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,该方法包括如下步骤:第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。2.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步至所述第三步均在离线状态下执行。3.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步的具体过程为:依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不...

【专利技术属性】
技术研发人员:杜惠杰马一原雷杰虞红高阳杜渐张兴张盈赵宏鸣
申请(专利权)人:北京仿真中心
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1