基于医学影像的辐射屏蔽装置及方法制造方法及图纸

技术编号:18036718 阅读:27 留言:0更新日期:2018-05-26 00:48
本发明专利技术提供一种基于医学影像的辐射屏蔽装置及方法,能根据患者的个体差异,如肿瘤位置、大小等,形成有针对性、精确度高的辐射屏蔽,从而减少或避免放射线照射装置对患者正常组织的辐射。本发明专利技术的屏蔽装置包括扫描被照射体的照射部位并输出医学影像体素数据的医学影像扫描装置,根据医学影像体素数据建立三维假体组织模型并根据三维假体组织模型建立屏蔽体三维模型的数据处理及三维建模装置,由屏蔽体三维模型数据输入3D打印机打印形成的屏蔽体,屏蔽体位于放射线照射装置和照射部位之间。

【技术实现步骤摘要】
基于医学影像的辐射屏蔽装置及方法
本专利技术一方面涉及放射线治疗的辐射屏蔽装置,尤其是一种基于医学影像的辐射屏蔽装置;本专利技术另一方面涉及放射线治疗的辐射屏蔽方法,尤其是一种基于医学影像的辐射屏蔽方法。
技术介绍
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastomamultiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relativebiologicaleffectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。放射线治疗过程中会产生各种放射线,如硼中子捕获治疗过程产生低能至高能的中子、光子,这些放射线可能会对人体正常组织造成不同程度的损伤。因此在放射线治疗领域,如何在达到有效治疗的同时减少对外界环境、医务人员或患者正常组织的辐射污染是一个极为重要的课题。而现有的放射线治疗设备,对辐射的屏蔽还主要集中于放置设备的房间、设备本身,而没有针对从设备出口出来的放射线对患者正常组织的辐射,更不能根据患者的个体差异,如肿瘤位置、大小、形状等,形成有针对性、精确度高的辐射屏蔽。核磁共振成像(MagneticResonanceImaging,MRI)或电子计算机断层扫描(ComputedTomography,CT)等医学影像数据能够针对人体体内特征提供较为详细的组织几何结构信息,为人体内部结构的实体建模提供了数据基础。因此,有必要提出一种基于医学影像的辐射屏蔽方法和装置,能够形成有针对性、精确度高的辐射屏蔽,减少或避免对患者正常组织的辐射。
技术实现思路
为了屏蔽放射线照射装置对被照射体的正常组织的辐射,本专利技术一方面提供了一种基于医学影像的辐射屏蔽装置,其包括医学影像扫描装置,扫描被照射体的照射部位,并输出医学影像体素数据;数据处理及三维建模装置,根据医学影像体素数据建立三维假体组织模型,并根据三维假体组织模型建立屏蔽体三维模型;屏蔽体,由屏蔽体三维模型数据输入3D打印机打印形成,位于放射线照射装置和照射部位之间。作为一种优选地,屏蔽体三维模型是根据三维假体组织模型,结合放射线照射装置的数据信息及放射线照射装置与照射部位的位置关系建立的。作为一种优选地,屏蔽体的材料包括屏蔽中子的材料或屏蔽光子的材料中的至少一种,屏蔽体固定在被照射体表面,与被照射体表面外形相互匹配。屏蔽体具有中心通孔,中心通孔的直径与被照射体体内的病变组织在垂直于射束方向的最大尺寸的比值区间为1-2,屏蔽体最大厚度的数值范围为3-20mm,屏蔽体外表面的面积范围为10-200cm2。作为一种优选地,放射线照射装置产生的放射线经过屏蔽体后被衰减的比例为≥50%,放射线经过屏蔽体后对正常组织的辐射深度与不经过屏蔽体相比的比例≤50%。本专利技术另一方面提供了一种放射线治疗装置,放射线治疗装置包括放射线照射装置和屏蔽体,放射线照射装置照射被照射体,形成照射部位;屏蔽体位于放射线照射装置和照射部位之间,并由3D打印机打印形成。作为一种优选地,放射线治疗装置还包括三维影像扫描装置和数据处理及三维建模装置,三维影像扫描装置扫描照射部位并输出三维数据;数据处理及三维建模装置根据三维数据建立照射部位三维模型,并根据照射部位三维模型建立屏蔽体三维模型;屏蔽体由屏蔽体三维模型数据输入3D打印机打印形成。作为一种优选地,放射线治疗装置还包括医学影像扫描装置和数据处理及三维建模装置,医学影像扫描装置扫描照射部位并输出医学影像体素数据;数据处理及三维建模装置根据医学影像体素数据建立三维假体组织模型,并根据三维假体组织模型建立屏蔽体三维模型;屏蔽体由屏蔽体三维模型数据输入3D打印机打印形成。作为一种优选地,放射线照射装置包括放射线产生装置、射束整形体、准直器,放射线产生装置能够产生放射线,射束整形体能够调整放射线的射束品质,准直器能够汇聚经过所述射束整形体的放射线,屏蔽体位于准直器和照射部位之间。进一步地,放射线治疗装置为硼中子捕获治疗装置,被照射体为癌症患者,放射线产生装置为中子产生装置,中子产生装置包括加速器和靶材,加速器对带电粒子进行加速,中子由加速的带电粒子与靶材作用产生。进一步地,患者正常组织在硼中子捕获治疗过程中接受的辐射剂量小于18Gy。作为一种优选地,放射线治疗装置还包括治疗台,放射线经过屏蔽体后作用到治疗台上的患者的病变组织,屏蔽体固定在被照射体表面或治疗台或准直器上。本专利技术第三方面提供了一种基于医学影像的辐射屏蔽方法,包括如下步骤:通过医学影像扫描装置扫描被照射体的照射部位,并输出所述照射部位的医学影像体素数据;根据医学影像体素数据建立三维假体组织模型;根据三维假体组织模型数据建立屏蔽体三维模型;将屏蔽体三维模型数据输入3D打印机打印屏蔽体;将屏蔽进行安装定位。作为一种优选地,根据三维假体组织模型数据建立屏蔽体三维模型的步骤中还包括采集或输入放射线照射装置的数据信息及放射线照射装置与照射部位的位置关系,结合三维假体组织模型数据建立屏蔽体三维模型,并确定屏蔽体的安装位置。本专利技术所述的基于医学影像的辐射屏蔽方法和装置,屏蔽体经3D打印形成,能够依据不同被照射体的个体差异分别成型,且能够对复杂形状快速成型,针对性更强、精确度更高,能够获得更好的辐射屏蔽效果。附图说明图1为本专利技术实施例中的硼中子捕获治疗装置示意图;图2为本专利技术实施例中的基于医学影像的辐射屏蔽方法的逻辑框图;图3为本专利技术实施例中的屏蔽体与被照射体的位置关系示意图。具体实施方式下面结合附图对本专利技术做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。如图1,本实施例中的放射线治疗装置优选为硼中子捕获治疗装置100,包括中子产生装置10、射束整形体20、准直器30和治疗台40。中子产生装置10包括加速器11和靶材T,加速器11对带电粒子(如质子、氘核等)进行加速,产生如质子线的带电粒子线P,带电粒子线P照射到靶材T并与靶材T作用产生中子线(中子束)N,靶材T优选为金属靶材。依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、金属靶材的物化性等特性来挑选合适的核反应,常被讨论的核反应有7Li(p,n)7Be及9Be(p,n)9B,这两种反应皆为吸热反应。两种核反应的能量阀值分别为1.881MeV和2.055MeV,由于硼中子捕获治疗的理想中子源为keV能量等级的超热中子,理论上若使用能量仅稍高于阀值的质子轰击金属锂靶材,可产生相对低能的中子,不须太多的缓速处理便可用于临床,然而锂金属(Li)和铍金属(Be)两种靶材与阀值能量的质子作用本文档来自技高网
...
基于医学影像的辐射屏蔽装置及方法

【技术保护点】
一种基于医学影像的辐射屏蔽装置,用于屏蔽放射线照射装置对被照射体的正常组织的辐射,其特征在于,包括:医学影像扫描装置,所述医学影像扫描装置扫描所述被照射体的照射部位,并输出医学影像体素数据;数据处理及三维建模装置,所述数据处理及三维建模装置根据所述医学影像体素数据建立三维假体组织模型,并根据所述三维假体组织模型建立屏蔽体三维模型;屏蔽体,所述屏蔽体由所述屏蔽体三维模型数据输入3D打印机打印形成,所述屏蔽体位于放射线照射装置和照射部位之间。

【技术特征摘要】
1.一种基于医学影像的辐射屏蔽装置,用于屏蔽放射线照射装置对被照射体的正常组织的辐射,其特征在于,包括:医学影像扫描装置,所述医学影像扫描装置扫描所述被照射体的照射部位,并输出医学影像体素数据;数据处理及三维建模装置,所述数据处理及三维建模装置根据所述医学影像体素数据建立三维假体组织模型,并根据所述三维假体组织模型建立屏蔽体三维模型;屏蔽体,所述屏蔽体由所述屏蔽体三维模型数据输入3D打印机打印形成,所述屏蔽体位于放射线照射装置和照射部位之间。2.如权利要求1所述的基于医学影像的辐射屏蔽装置,其特征在于,所述屏蔽体三维模型是根据所述三维假体组织模型,结合所述放射线照射装置的数据信息及放射线照射装置与照射部位的位置关系建立的。3.如权利要求1所述的基于医学影像的辐射屏蔽装置,其特征在于,所述屏蔽体的材料包括屏蔽中子的材料或屏蔽光子的材料中的至少一种,所述屏蔽体固定在所述被照射体表面,与所述被照射体表面外形相互匹配。4.如权利要求3所述的基于医学影像的辐射屏蔽装置,其特征在于,所述屏蔽体具有中心通孔,所述中心通孔的直径与所述被照射体体内的病变组织在垂直于射束方向的最大尺寸的比值区间为1-2,所述屏蔽体最大厚度的数值范围为3-20mm,所述屏蔽体外表面的面积范围为10-200cm2。5.如权利要求1所述的基于医学影像的辐射屏蔽装置,其特征在于,所述放射线照射装置产生的放射线经过屏蔽体后被衰减的比例为≥50%,放射线经过屏蔽体后对正常组织的辐射深度与不经过屏蔽体相比的比例≤50%。6.一种放射线治疗装置,其特征在于,所述放射线治疗装置包括放射线照射装置和屏蔽体,所述放射线照射装置照射被照射体,形成照射部位;所述屏蔽体位于所述放射线照射装置和照射部位之间,并由3D打印机打印形成。7.如权利要求6所述的放射线治疗装置,其特征在于,所述放射线治疗装置还包括三维影像扫描装置和数据处理及三维建模装置,所述三维影像扫描装置扫描所述照射部位并输出三维数据;所述数据处理及三维建模装置根据所述三维数据建立照射部位三维模型,并根据所述照射部位三维模型建立屏蔽体三维模型;所述屏蔽体由所述屏蔽体三维模型数据输入3D打印机打印形成。8.如权利要求...

【专利技术属性】
技术研发人员:刘渊豪
申请(专利权)人:南京中硼联康医疗科技有限公司
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1