提供了一种气体保护电弧焊的实心焊丝,该焊丝具有良好的送丝性和电弧稳定性。该焊丝的硬化因子在0.25到0.55之间。
【技术实现步骤摘要】
本专利技术涉及一种气体保护电弧焊的实心焊丝。更具体地,涉及一种能够在焊接过程中提高焊丝的送丝性而改善电弧稳定性的气体保护电弧焊的实心焊丝。
技术介绍
当使用焊丝进行焊接时,电弧稳定性对于获得良好的焊接质量和平滑的焊缝是一个非常重要的因素。特别是,为了改善电弧稳定性,应当提高焊丝的送丝性。当使用可得到的常规焊丝,即卷轴(spool)105和包装桶(pail pack)104,进行焊接时,如图1所示,焊丝由送丝导管(feeding cable)102经过接触焊嘴(contact tip)输送到焊接部分,从而利用接触焊嘴末端产生的电弧热进行焊接。此时,焊丝接触送丝导管102和接触焊嘴的内壁,在接触部分产生的送丝阻力大大影响送丝性。考虑到焊丝与送丝导管102和接触焊嘴之间的接触部分产生的送丝阻力,以及因此而造成的送丝性下降,很明显,焊丝的力学性能是非常重要的因素。通过限制传统焊丝的拉伸强度、拉伸强度的变化、屈强比(yield ratio)、弹性极限比(弹性极限比=弹性极限/拉伸强度)和/或表面处理剂的用量,可以增大焊丝的强度,从而在焊接过程中提高焊丝的送丝性。上述参数是使用在拉伸试验过程中观察到的应力-应变曲线提取的。但是,现有技术的参数公式不能准确地反映焊丝性质,从而难以控制焊丝送丝性和电弧稳定性。
技术实现思路
本专利技术通过提供一种气体保护电弧焊的实心焊丝而解决上述问题,该焊丝能最佳地控制准确反映焊丝应变硬化速率(strain hardening rate)的硬化因子,从而提高焊接过程的焊丝送丝性,因此提高电弧稳定性。根据本专利技术的一个方面,一种气体保护电弧焊的完全实心焊丝的由下式1定义的硬化因子在0.25-0.55范围内,硬化因子=(最大拉伸强度一屈服强度)/屈服强度其中,所述屈服强度表示偏移0.05%的屈服强度(offset yield strength)。在此过程中,焊丝可以含有0.03-0.10重量%的C、0.45-1.05重量%的Si、0.90-1.90重量%的Mn、等于或小于0.030重量%的P、等于或小于0.030重量%的S、和余量的Fe及其它杂质。另外,通过从最终拉拔工序之后的弯曲辊和倾斜校直辊中选择的至少一种与纵向/横向校正辊的组合,可以控制气体保护电弧焊实心焊丝的硬化因子。附图说明通过参考附图描述本专利技术某些代表性实施方式,本专利技术的上述和其它目的、特征和优点将变得更加清楚。在附图中图1是焊丝送丝线的示意图;图2是表示从拉伸试验过程观察到的应力-应变曲线推导的应变硬化速率的曲线图; 图3是在拉伸试验过程中观察到的应力-应变曲线;图4是表示镀铜焊丝的硬化因子、焊接电流的标准偏差和焊丝拉伸强度的曲线图;图5是根据本专利技术的代表性实施方式的、适于最后拉拔之后的弯曲辊的透视图;图6和7是根据本专利技术的代表性实施方式的、与水平面倾斜45°的校直辊的透视图;以及图8是表示根据本专利技术的代表性实施方式的纵向/横向校直辊的透视图。具体实施例方式下面将详细说明本专利技术的代表性实施方式。首先说明硬化因子的提取(extraction),硬化因子的提出是作为一个能反映焊丝的拉伸强度和应变硬化速率的新参数。如上所述,在考虑到焊接过程中焊丝的拉伸强度大大影响送丝性和电弧稳定性时,本专利技术的专利技术人试图提取能使焊丝的送丝性和电弧稳定性在焊接过程中保持在最佳状态的焊丝拉伸强度,并控制拉伸强度。因此,使用具有相同化学成分的原始棒材,在焊丝卷绕到卷轴或包装桶之前,改变焊丝的拉拔方法、拉拔速度和校直方法,观察完成的焊丝的拉伸强度变化,并且根据焊丝的拉伸强度进行送丝性和电弧稳定性的试验。此时,可以观察到,具有类似拉伸强度的焊丝在送丝性和电弧稳定性之间存在差异。为了理解这个结果,分析通过焊丝拉伸试验得到的应力-应变曲线。结果,可以从应力-应变曲线观察到,在拉伸强度类似时,屈服强度不同。下面的表1表示,在焊接拉伸强度为126千克力/毫米2至132千克力/毫米2的镀铜焊丝的过程中,具有不同送丝性和电弧稳定性的焊丝的屈服强度与拉伸强度之间的关系。表1 这里,屈服强度表示偏移0.05%的屈服强度。如表1所示,甚至在拉伸强度均匀一致时,可以看出焊接过程的焊丝送丝性和电弧稳定性随屈服强度而变化。即,通过将拉伸强度和应变硬化速率控制在适当范围,以及通过简单地调节拉伸强度,可以在焊接过程中得到好的送丝性和电弧稳定性。此概念在此可以表示为硬化因子。在此过程中,应变硬化速率是从屈服点到最大拉伸强度的应力增大率(Δ应力/Δ应变),其曲线图表示在图2中。例如,虽然焊丝具有相同的拉伸强度,但是在缠绕到卷轴或包装桶之前,在经过校直辊的校直过程中作用于焊丝的外力可以改变其应变硬化速率,从而改变焊丝的性能。即,虽然焊丝具有相同的拉伸强度,但作用于焊丝的外力使其应变硬化速率改变,使焊丝的性能随屈服强度而改变。为了理解硬化因子,参看图3所示的拉伸试验过程中观察到的应力-应变曲线,可以看出,弹性区的应力与相同区(A区)的应变完全成正比。当载荷大于与屈服强度对应的数值时,产生塑性形变。接着,当连续产生塑性形变时,产生应变硬化,使应力随塑性形变速率的增大而增大。由于拉伸试验试样的体积在塑性形变过程中不变,即,满足下面的式2,因此试验试样的横截面积随其长度增大而减小。AL=AoLo其中,A表示拉伸试验过程中试验试样的横截面积,L表示试验试样的长度,Ao表示试验试样的起始横截面积,Lo表示试验试样的起始长度。虽然起始应变硬化大于横截面积减小得到的补偿,并且应力随应变增大而连续增大,但在起始应变硬化之后,试验试样横截面积的减小由于应变硬化而变得大于应变载荷的增大。这种状况是从试验试样的弱点产生的。然后,塑性形变集中在B区,并且试验试样可以在B区颈缩或局部变薄。从该点开始,与应变载荷增大相比,试验试样的横截面积由于应变硬化而急剧减小,因此试样形变所需的实际载荷减小,并且应力连续减小直至断裂(C区)。如上所述,应变硬化速率大大影响试样的拉伸强度,并且试样的最终强度由应变硬化速率而定。下面将详细说明提取硬化因子的方法,以及限制一个范围的原因。硬化因子是一个衡量(scale),用于表示从拉伸试验过程中观察到的应力-应变曲线推导的应变硬化速率,并且由下式1定义。硬化因子=(最大拉伸强度-屈服强度)/屈服强度其中,屈服强度表示偏移0.05%的屈服强度。拉伸试验是根据KS B 0802对焊丝进行的。从拉伸试验得到的应力-应变曲线中得出最大拉伸强度和屈服强度,以计算硬化因子。按这种方式计算的硬化因子可以控制在0.25-0.55的范围内。如果硬化因子低于0.25,由于焊丝的弹性形变区比塑性形变区宽得多,当送丝载荷高时,即,当进行大电流或高速焊接时,焊丝不容易根据送丝导管的形状而变形。另外,由于焊丝的弹性强,必须使用大的应变力将焊丝绕在卷轴和包装桶上,并且得到的缠绕焊丝具有过大的弹性力。因此,当焊丝在焊接过程中经过导管和接触焊嘴时,产生大的接触阻力,并且送丝性可能不稳定并且电弧稳定性变差。另外,如果硬化因子大于0.55,由于焊丝的弹性形变区比塑性形变区窄得多,当送丝载荷高时,即,当进行大电流或高速焊接时,焊丝可能太容易根据送丝导管的形状而变形。因此,焊丝在经过导管时容易弯曲,并且接触焊嘴中本文档来自技高网...
【技术保护点】
一种气体保护电弧焊的实心焊丝,该焊丝的由下式1定义的硬化因子在0.25-0.55范围内,[式1]硬化因子=(最大拉伸强度-屈服强度)/屈服强度其中,所述屈服强度表示偏移0.05%的屈服强度。
【技术特征摘要】
...
【专利技术属性】
技术研发人员:朴炳浩,
申请(专利权)人:基斯韦尔株式会社,
类型:发明
国别省市:KR[韩国]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。