【技术实现步骤摘要】
基于t分布哈希的图像检索方法及系统
本专利技术涉及图片检索
,更具体地,涉及一种基于t分布哈希的图像检索方法及系统。
技术介绍
目前,在互联网时代,随着互联网上多媒体资源的不断增加,如何从大规模数据中快速、有效的查找到相关的数据,无论是在时间上还是空间上都是一个极大的考验。随着互联网的飞速发展,大容量、高维度的图像大数据在搜索引擎和社会网络中越来越普遍,也吸引了越来越多的关注,如何快速有效的进行图像检索分析是一个亟需解决的问题。针对这一问题,一个非常常用且有效的解决方法是哈希,即将高维数据转换为紧凑的二进制码,并为相似的数据生成相似的二进制码。本专利技术重点关注数据相关的哈希方法,经证明,该类方法比数据不相关的哈希方法(如局部敏感哈希)更有效。在哈希算法的研究领域下,有两类重要的研究问题,一者是近邻查询,一者是等距查询。近邻查询的目标是在数据集中找出与给定样本最接近的数据点,等距查询的目标是给定误差值之后,找出所有数据集中与给定样本误差不大于给定误差值的数据点。本专利技术重点关注等距查询问题。过去的哈希方法已经达到了不错的检索效果,但是,这些哈希方法一方面都 ...
【技术保护点】
一种图像检索方法,其特征在于,包括:将待查询图片输入预先训练后的深度卷积网络,生成所述待查询图片的低维图像表征;对所述低维图像表征生成对应的哈希编码,得到待查询图片的哈希编码;计算待查询图片的哈希编码与数据库中每一张模板图片的哈希编码之间的汉明距离;将与所述待查询图片的哈希编码的汉明距离小于等于预设距离的模板图片确定为与所述待查询图片匹配的模板图片。
【技术特征摘要】
1.一种图像检索方法,其特征在于,包括:将待查询图片输入预先训练后的深度卷积网络,生成所述待查询图片的低维图像表征;对所述低维图像表征生成对应的哈希编码,得到待查询图片的哈希编码;计算待查询图片的哈希编码与数据库中每一张模板图片的哈希编码之间的汉明距离;将与所述待查询图片的哈希编码的汉明距离小于等于预设距离的模板图片确定为与所述待查询图片匹配的模板图片。2.如权利要求1所述的图像检索方法,其特征在于,所述深度卷积网络包括由五层卷积层和两层全连接层组成的子网络以及一个全连接量化层;所述将待查询图片输入预先训练后的深度卷积网络,生成所述待查询图片的低维图像表征具体包括:将所述待查询图片输入预先训练后的深度卷积网络,通过所述子网络生成所述待查询图片的高维图像表征;将所述待查询图片的高维图像表征输入所述全连接量化层,生成待查询图片的低维图像表征。3.如权利要求1所述的图像检索方法,其特征在于,所述对所述低维图像表征生成对应的哈希编码,得到待查询图片的哈希编码具体包括:根据生成的所述待查询图片的低维图像表征,采用双曲正切函数激活并二值化生成哈希编码,得到待查询图片的哈希编码。4.如权利要求1所述的图像检索方法,其特征在于,通过如下方式预先训练深度卷积网络:将训练集中的所有图片分为多批,对其中每一批图片进行轮询训练,并采用反向传播算法对所述深度卷积网络进行优化。5.如权利要求4所述的图像检索方法,其特征在于,所述将训练集中的所有图片分为多批,对其中每一批图片进行轮询训练,并采用反向传播算法对所述深度卷积网络进行优化具体包括:将每一批图片中的每一张图片均输入深度卷积网络,生成每一张图片的低维图像表征,并采用双曲正切函数进行激活,生成对应的连续编码;根据任意两张图片对应的连续编码,计算任意两张图片组成的图片对之间的交叉熵损失;根据每一张图片对应的连续编码,计算每一张图片在二值化过程中的量化损失;根据任意两张图片组成的图片对之间的交叉熵损失和每一张图片的量化损失,计算所有图片对的平均交叉熵损失L和所有图片的平均量化损失Q;根据所述L和Q,计算出一批图片中所有的图片的最终损失C,并利用计算出来的最终损失C对所述深度卷积网络进行优...
【专利技术属性】
技术研发人员:王建民,龙明盛,黄超,刘斌,
申请(专利权)人:清华大学,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。