The invention discloses a SFLA intelligent radar sea clutter prediction system and method based on system by radar, database and computer are connected in sequence, irradiation of radar detection area, and radar sea clutter data is stored into the database, the host computer comprises a data preprocessing robust modeling module, prediction model module, intelligent optimization module, sea clutter prediction module, model updating module and result display module. The present invention for the chaotic characteristics of radar sea clutter, clutter data to reconstruct radar sea, and nonlinear fitting of the reconstructed data, the introduction of SFLA method, so as to establish the intelligent prediction model of sea clutter radar wave, which can online prediction of radar sea clutter. The modeling method used in the invention only needs less samples, and reduces the influence of human factors, has high intelligence and strong robustness.
【技术实现步骤摘要】
一种基于混合蛙跳算法的智能雷达海杂波预报系统及方法
本专利技术涉及雷达数据处理领域,特别地,涉及一种基于混合蛙跳算法的智能雷达海杂波预报系统及方法。
技术介绍
海杂波,即来自于被雷达发射信号照射的一片海面的后向散射回波。由于海杂波对来自海面或接近海面的“点”目标,如航海浮标及漂浮在海上的冰块等目标的雷达回波的可检测性形成严重制约,因此海杂波的研究对海洋背景中轮船等目标的探测性能具有十分重要的影响从而具有重要理论意义和实用价值。习惯上海杂波被视为单一随机过程,如对数正态分布、K分布等。然而这些模型在实际应用中都有其特定的局限性,其中一个重要原因是海杂波看似随机的波形,实际上并不具有随机分布特性。
技术实现思路
为了克服传统雷达数据处理的易受人为因素影响、智能性不足的缺点,本专利技术提供一种避免人为因素影响、智能性高的基于混合蛙跳算法的智能雷达海杂波预报系统及方法。本专利技术解决其技术问题所采用的技术方案是:一种基于混合蛙跳算法的智能雷达海杂波预报系统,包括雷达、数据库以及上位机,雷达、数据库和上位机依次相连,所述雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库,所述的上位机包括:数据预处理模块,用以进行雷达海杂波数据预处理,采用如下过程完成:(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(3)对训练样本进行归一化处理,得到归一化幅值其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;(4)将归一化后的训练样本重构,分别得到输 ...
【技术保护点】
一种基于混合蛙跳算法的智能雷达海杂波预报系统,包括雷达、数据库以及上位机,雷达、数据库和上位机依次相连,其特征在于:所述雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库,所述的上位机包括数据预处理模块、鲁棒预报模型建模模块、智能寻优模块、海杂波预报模块、判别模型更新模块和结果显示模块;所述数据预处理模块,用以进行雷达海杂波数据预处理,采用如下过程完成:(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(3)对训练样本进行归一化处理,得到归一化幅值
【技术特征摘要】
1.一种基于混合蛙跳算法的智能雷达海杂波预报系统,包括雷达、数据库以及上位机,雷达、数据库和上位机依次相连,其特征在于:所述雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库,所述的上位机包括数据预处理模块、鲁棒预报模型建模模块、智能寻优模块、海杂波预报模块、判别模型更新模块和结果显示模块;所述数据预处理模块,用以进行雷达海杂波数据预处理,采用如下过程完成:(1)雷达对所检测海域进行照射,并将雷达海杂波数据储存到所述的数据库;(2)从数据库中采集N个雷达海杂波回波信号幅值xi作为训练样本,i=1,...,N;(3)对训练样本进行归一化处理,得到归一化幅值其中,minx表示训练样本中的最小值,maxx表示训练样本中的最大值;(4)将归一化后的训练样本重构,分别得到输入矩阵X和对应的输出矩阵Y:其中,D表示重构维数,D为自然数,且D<N,D的取值范围为50-70;所述鲁棒预报模型建模模块用以建立预报模型,采用如下过程完成:将数据预处理模块得到的X、Y代入如下线性方程:其中权重因子vi由下式计算:其中是误差变量ξi标准差的估计,c1,c2为常量;求解得待估计函数f(x):其中,M是支持向量的数目,1v=[1,...,1]T,上标T表示矩阵的转置,是拉格朗日乘子,b*是偏置量,K=exp(-||xi-xj||/θ2),其中i=1,…,M,j=1,…,M,和exp(-||x-xi||/θ2)均为支持向量机的核函数,xj为第j个雷达海杂波回波信号幅值,θ是核参数,x表示输入变量,γ是惩罚系数;所述智能寻优模块,用以采用混合蛙跳算法对鲁棒预报模型的核参数θ和惩罚系数γ进行优化,采用如下过程完成:(A):初始化青蛙群体参数,设种群青蛙数为P,最大迭代次数Maxgen,局部搜索的迭代次数Mmax,最大更新长度Dmax,分组数m以及每组青蛙数n,由于模型有两个参数需要优化,所以位置pi的维度为2维,随机生成每个青蛙的位置pi=(pi1,pi2),置初始迭代次数k=0;(B):计算所有青蛙的适应度值,并进行排序,分组,选取种群最优青蛙pg;(C):按照下式对子群最差青蛙对子群中最差的青蛙进行更新,接着在子群内重新排序,然后对子群最差青蛙进行更新;重复该局部搜索过程Mmax次;D=rand×(pb-pw)p′w=pw+D,-Dmax≤D≤Dmax其中,pw为子群最差青蛙,pb为子群最优青蛙,Dmax为最大变异尺度,p'w为更新后的青蛙。首先利用子群最优青蛙去更新,若新得到的青蛙优于原来子群最差青蛙,则取代之;否则种群最优青蛙代替子群最优青蛙进行更新,若新得到的青蛙优于原来子群最差青蛙,则取代之;否则随机生成一个青蛙取代原来子群最差青蛙。(D):当所有子群的局部搜索都已经完成,对所有青蛙进行混合、排序和分组,选取种群最优青蛙pg;(E):k=k+1,若k<Maxgen,则转至步骤(C);否则输出种群最优青蛙xg,为鲁棒预报模型的最优参数,算法终止;其中,初始种群大小为200,分组数10,每组子群数20,种群最大迭代数100,子群最大迭代数10,最大更新长度5。所述海杂波预报模块,用以进行海杂波预测,采用如下过程完成:(a)在采样时刻t采集D个海杂波回波信号幅值,得到TX=[xt-D+1,…,xt],xt-D+1表示第t-D+1采样时刻的海杂波回波信号幅值,xt表示第t采样时刻的海杂波回波信号幅值,(b)进行归一化处理;(c)代入鲁棒预报模型建模模块得到的待估计函数f(x),计算得到采样时刻(t+1)的海杂波预报值。所述判别...
【专利技术属性】
技术研发人员:刘兴高,卢伟胜,惠俊鹏,王泽,张泽银,
申请(专利权)人:浙江大学,
类型:发明
国别省市:浙江,33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。