基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法技术

技术编号:17193951 阅读:35 留言:0更新日期:2018-02-03 21:15
本发明专利技术提供一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,步骤如下:获得若干白钨矿样品;基于白钨矿样品中白钨矿颗粒的矿物学、形态学和产出特征对白钨矿颗粒进行挑选,得到高品质白钨矿颗粒;得到高品质白钨矿颗粒的扫描电镜‑阴极发光图像和背散射图像;基于扫描电镜‑阴极发光图像和背散射图像,根据白钨矿颗粒的形貌学和内部结构特征对高品质白钨矿颗粒进行划分,得到若干类型的高品质白钨矿颗粒;对若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析,获得铕含量和钼含量数据;根据铕含量数据计算铕异常,根据铕异常和钼含量数据建立元素分布图,元素分布图用以指示形成白钨矿的成矿流体的氧化还原性。

The oxidation of ore-forming fluid scheelite porphyry deposit in cathodoluminescence feature reduction method based on Discriminant

The invention provides an oxidation ore-forming fluid of porphyry deposits in scheelite cathodoluminescence feature reduction method based on the judgement, the steps are as follows: to obtain several scheelite samples; mineralogy, scheelite scheelite ore particles in morphology and output characteristics of scheelite particles based on the selection, to obtain high-quality scheelite particles; by scanning electron microscopy cathode with high quality scheelite particles emission image and back scattering image; scanning electron microscope cathodoluminescence images and backscattered images based on high quality scheelite particles are classified according to morphology of scheelite particles and the internal structure characteristics of several types of high-quality scheelite particles; in situ analysis of rare earth elements in several types of high quality scheelite particles, obtain Europium the content of molybdenum content and data calculation according to the content data; europium Europium Abnormal, according to EU anomaly and molybdenum content data to establish the element distribution, element distribution reduction by oxidation to indicate the formation of ore-forming fluid of scheelite.

【技术实现步骤摘要】
基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法
本专利技术涉及斑岩型矿床中白钨矿成矿流体特征研究领域,具体涉及基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法。
技术介绍
斑岩型钨矿床具有储量大、埋藏浅、品位低,易开采,可综合利用率高的特点。尽管从钨矿的储量及产量上,斑岩型钨矿床远不及石英脉型钨矿床,但是随着地质工作的不断深入,老矿山的不断探边增储,如广东莲花山斑岩型钨矿床,以及近年来新发现的西藏努日矽卡岩-斑岩型大型钨铜矿和湖南木瓜园矿床,使得斑岩型钨矿床已作为钨矿的主要来源之一。成矿流体作为矿床研究的主要内容之一,是指导找矿方向的重要指标,而成矿流体的氧化还原性对斑岩型矿床的意义更加重要。因此,查明斑岩型钨矿床的成矿流体性质,特别是流体的氧化还原性,是确定矿床成因类型、查明成矿规律的关键。白钨矿在许多矿床类型中普遍发育,如矽卡岩型矿床、斑岩型矿床、石英脉型矿床以及一些变质矿床中。尽管在20世纪末,人们已经发现白钨矿也是一种具有阴极发光现象的矿物,但是并未有人对斑岩型矿床中的白钨矿开展阴极发光相关研究。
技术实现思路
有鉴于此,本专利技术提供了一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,该判别方法能够利用白钨矿的阴极发光特征判别成矿流体的氧化还原特性。本专利技术提供一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,包括以下步骤:S101,根据野外矿床地质特征对斑岩型矿床进行采样,获得若干白钨矿样品;S102,通过制作电子探针片利用偏光显微镜确认所述白钨矿样品中白钨矿颗粒的矿物学、形态学以及产出特征,基于所述白钨矿颗粒的矿物学、形态学和产出特征对白钨矿颗粒进行挑选,得到高品质白钨矿颗粒;S103,利用扫描电镜-阴极荧光谱仪对所述高品质白钨矿颗粒进行阴极发光照相以及背散射电子成像,得到扫描电镜-阴极发光图像和背散射图像;S104,基于所述扫描电镜-阴极发光图像和背散射图像,根据白钨矿颗粒的形貌学和内部结构特征对高品质白钨矿颗粒进行划分,得到若干类型的高品质白钨矿颗粒;S105,采用原位激光剥蚀电感耦合等离子体质谱技术对所述若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析,获得所述高品质白钨矿颗粒的铕含量、钼含量、钐含量和钆含量数据;S106,根据铕含量、钐含量和钆含量数据计算铕异常,根据铕异常和钼含量数据建立元素分布图,所述元素分布图用以指示形成白钨矿的成矿流体的氧化还原性。进一步地,步骤S101中,采样得到的白钨矿样品中WO3的含量不小于0.06%。进一步地,步骤S102中,通过使用室内荧光灯照射所述白钨矿样品以确定白钨矿样品中白钨矿颗粒的产出位置,从而确定电子探针片的磨制位置,所述高品质白钨矿颗粒为粒径大于100μm和表面干净的白钨矿颗粒。进一步地,步骤S105中,采用原位激光剥蚀电感耦合等离子体质谱技术对所述若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析时,采用NIST612作为外标物质,采用Ca元素作为内标元素。进一步地,步骤S106中,所述元素分布图的纵坐标为铕异常数据,所述元素分布图的横坐标为钼含量数据,所述铕异常和钼含量数据的格式均为对数格式,所述铕异常的计算公式为:式中,Eu为铕含量标准化值,Sm为钐含量标准化值,Gd为钆含量标准化值,δEu大于1时为铕正异常,δEu小于1时为铕负异常。本专利技术提供的技术方案带来的有益效果是:本专利技术提供的成矿流体的氧化还原性判别方法是基于白钨矿阴极发光特征完成的,对查明形成白钨矿颗粒的流体演化具有指示意义,同时能判别成矿流体氧化还原性;本专利技术提供的判别方法不仅有效地指导了找矿方向,而且对斑岩型矿床的形成过程提供了研究依据;本专利技术提供的判别方法具有较强地直观性和实践指导意义。附图说明图1是本专利技术一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法的流程示意图。图2是本专利技术一实施例中获得的元素分布图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术实施方式作进一步地描述。请参考图1,本专利技术的实施例提供了一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,包括以下步骤:步骤S101,根据野外矿床地质特征对斑岩型矿床进行采样,选择出斑岩型矿床中WO3的含量不小于0.06%的若干白钨矿样品。步骤S102,制作电子探针片,利用荧光灯反复照射白钨矿样品确定白钨矿颗粒的产出位置,进而确定电子探针片的磨制位置,然后利用偏光显微镜确认步骤S101采样得到的白钨矿样品中白钨矿颗粒的矿物学、形态学以及产出特征,然后基于白钨矿颗粒的矿物学、形态学和产出特征对白钨矿颗粒进行挑选,选出粒径大于100μm和表面干净的高品质白钨矿颗粒。步骤S103,对步骤S102得到的高品质白钨矿颗粒进行喷碳处理,然后利用扫描电镜-阴极荧光谱仪对喷碳处理后的高品质白钨矿颗粒进行阴极发光照相以及背散射电子成像,通过调节加速电压、光束尺寸、焦距以及真空条件得到扫描电镜-阴极发光图像和背散射图像;本专利技术的一实施例中,扫描电镜-阴极荧光谱仪的分光波长范围为165nm~930nm,探头可伸缩长度为160mm,阴极发光照相实验条件的Z值为13.8~14.5mm,阴极发光电压为800~1000V,场发射扫描电镜的光斑尺寸为5.0,电压为10KV。步骤S104,基于扫描电镜-阴极发光图像,利用背散射图像环带结构核-边的明暗度、振荡环带特征、嵌布特征,根据白钨矿颗粒的形貌学和内部结构特征对高品质白钨矿颗粒进行划分,得到若干类型的高品质白钨矿颗粒。步骤S105,采用原位激光剥蚀电感耦合等离子体质谱技术对若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析,采用NIST(NationalInstituteofStandardsandTechnology,国家标准与技术研究所)612作为外标物质,采用Ca元素作为内标元素,获得高品质白钨矿颗粒的铕含量、钼含量、钐含量和钆含量数据。步骤S106,根据铕含量、钐含量和钆含量数据计算铕异常,铕异常的计算公式为:式中,Eu为铕含量标准化值,Sm为钐含量标准化值,Gd为钆含量标准化值,δEu大于1时为铕正异常,δEu小于1时为铕负异常;以铕异常数据为纵坐标,以钼含量数据为横坐标,建立元素分布图,元素分布图用以指示形成白钨矿的成矿流体的氧化还原性;铕异常和钼含量数据的格式均为对数格式。参考图2,其为利用本专利技术提供的判别方法得到的一实施例中的元素分布图,图2中,三角形、菱形和圆形图案分别表示从第一钻孔中采集得到的白钨矿颗粒,从三角形到圆形图案,第一钻孔由浅至深,说明第一钻孔的热液流体由浅至深,还原性逐渐增强;图2中十字形图案表示从第二钻孔中采集得到的白钨矿颗粒,第二钻孔的位置位于第一钻孔的东南侧,第二钻孔的热液流体偏还原性;图2中叉形图案表示从第三钻孔中采集得到的白钨矿颗粒,第三钻孔的位置位于第一钻孔的西北侧,第三钻孔的热液流体偏中性,从图2综合分析判断形成白钨矿的成矿热液流体由浅至深,流体的还原性逐渐增强;由东南至西北,流体的氧化性逐渐增强。本专利技术提供的成矿流体的氧化还原性判别方法是基于白钨矿阴极发光特征完成的,对查明形成白钨矿颗粒的流体演化具有指示本文档来自技高网...
基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法

【技术保护点】
一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,其特征在于,包括以下步骤:S101,根据野外矿床地质特征对斑岩型矿床进行采样,获得若干白钨矿样品;S102,通过制作电子探针片利用偏光显微镜确认所述白钨矿样品中白钨矿颗粒的矿物学、形态学以及产出特征,基于所述白钨矿颗粒的矿物学、形态学和产出特征对白钨矿颗粒进行挑选,得到高品质白钨矿颗粒;S103,利用扫描电镜‑阴极荧光谱仪对所述高品质白钨矿颗粒进行阴极发光照相以及背散射电子成像,得到扫描电镜‑阴极发光图像和背散射图像;S104,基于所述扫描电镜‑阴极发光图像和背散射图像,根据白钨矿颗粒的形貌学和内部结构特征对高品质白钨矿颗粒进行划分,得到若干类型的高品质白钨矿颗粒;S105,采用原位激光剥蚀电感耦合等离子体质谱技术对所述若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析,获得所述高品质白钨矿颗粒的铕含量、钼含量、钐含量和钆含量数据;S106,根据铕含量、钐含量和钆含量数据计算铕异常,根据铕异常和钼含量数据建立元素分布图,所述元素分布图用以指示形成白钨矿的成矿流体的氧化还原性。

【技术特征摘要】
1.一种基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,其特征在于,包括以下步骤:S101,根据野外矿床地质特征对斑岩型矿床进行采样,获得若干白钨矿样品;S102,通过制作电子探针片利用偏光显微镜确认所述白钨矿样品中白钨矿颗粒的矿物学、形态学以及产出特征,基于所述白钨矿颗粒的矿物学、形态学和产出特征对白钨矿颗粒进行挑选,得到高品质白钨矿颗粒;S103,利用扫描电镜-阴极荧光谱仪对所述高品质白钨矿颗粒进行阴极发光照相以及背散射电子成像,得到扫描电镜-阴极发光图像和背散射图像;S104,基于所述扫描电镜-阴极发光图像和背散射图像,根据白钨矿颗粒的形貌学和内部结构特征对高品质白钨矿颗粒进行划分,得到若干类型的高品质白钨矿颗粒;S105,采用原位激光剥蚀电感耦合等离子体质谱技术对所述若干类型的高品质白钨矿颗粒中的稀土元素进行原位分析,获得所述高品质白钨矿颗粒的铕含量、钼含量、钐含量和钆含量数据;S106,根据铕含量、钐含量和钆含量数据计算铕异常,根据铕异常和钼含量数据建立元素分布图,所述元素分布图用以指示形成白钨矿的成矿流体的氧化还原性。2.如权利要求1所述的基于斑岩型矿床中白钨矿阴极发光特征的成矿流体氧化还原性的判别方法,其特征在于,步骤S...

【专利技术属性】
技术研发人员:王敏芳刘坤张旭波王有江
申请(专利权)人:中国地质大学武汉
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1