基于主题模型和机器学习的回答者推荐方法技术

技术编号:17007612 阅读:26 留言:0更新日期:2018-01-11 03:55
本发明专利技术提出一种基于主题模型和机器学习的回答者推荐方法,属于软件工程与机器学习领域。本发明专利技术同时考虑了用户的专业知识、主题和活跃度,扩展隐含的狄利克雷模型得到回答者推荐模型,将推荐问题转化为机器学习的分类问题,将用户主题分布、用户主题专业知识分布和用户主题活跃度分布转化为特征向量,得到用户的主题特征、专业知识特征和活跃度特征,从而得到一种问题回答者的推荐方法。本发明专利技术方法直观、简单、有效,在一定程度上解决了现有的问题回答者推荐方法缺乏对推荐的回答者能够及时回答的可能性以及对新问题推荐回答者的准确性等问题,并且能够更好地提高对问题推荐回答者的有效性和可用性。

【技术实现步骤摘要】
基于主题模型和机器学习的回答者推荐方法
本专利技术涉及软件工程及机器学习领域,具体地,涉及一种基于主题模型和机器学习的回答者推荐方法。
技术介绍
随着问答社区的发展,越来越多的互联网用户通过问答社区获取所需信息。由于大型互动问答系统中每天产生大量的新问题,提问者不得不等待较长的时间,问题才能得到响应和解决;同时,回答者不得不在成千上万的未解决的问题中浏览查找自己感兴趣的问题回答,非常费时费力,从而利用回答者推荐方法来准确、快速地获取所需信息受到了越来越多的重视。问答社区中问题回答者推荐问题,致力于解决问答社区中由于海量信息给提问者和回答者造成的困难,帮助问答社区中回答者便捷地得到自己感兴趣的问题,同时减少提问者问题得到解决的等待时间。根据问题的主题分类,利用主题相似性对问题感兴趣的回答者进行推荐,并进行相应回答的验证是比较容易实现的,绝大多数问答社区的回答者推荐都利用此类推荐方法进行验证。然而,该方法只能解决与问题主题相似的回答者进行推荐,但不能保证被推荐的回答者是否能够及时的回答提问者的问题,因此缺乏回答者推荐的有效性,以及问题被回答的可能性。本专利技术在考虑主题相似性的同时考虑了本文档来自技高网...
基于主题模型和机器学习的回答者推荐方法

【技术保护点】
一种基于主题模型和机器学习的回答者推荐方法,其特征在于,包括如下两方面:(一)基于扩展隐含的狄利克雷主题模型构建回答者推荐模型,所述回答者推荐模型包括三部分:用户的专业知识、用户的主题和用户的活跃度;包括如下步骤:步骤1,从问答社区中获取历史数据,得到每个用户在各个时间段内的问答记录,问答记录内容包括提问信息、回答信息和评论信息,对问答记录内容清理后获得主题模型训练的语料库,根据语料库训练得到主题模型和问题标签特征;并利用回答者获得的投票数作为回答者的专业知识水平,利用用户访问问答社区的记录计算用户的活跃度;步骤2,基于主题模型计算用户主题分布、主题词项分布、用户主题专业知识分布和用户主题活跃...

【技术特征摘要】
2017.06.07 CN 20171042383321.一种基于主题模型和机器学习的回答者推荐方法,其特征在于,包括如下两方面:(一)基于扩展隐含的狄利克雷主题模型构建回答者推荐模型,所述回答者推荐模型包括三部分:用户的专业知识、用户的主题和用户的活跃度;包括如下步骤:步骤1,从问答社区中获取历史数据,得到每个用户在各个时间段内的问答记录,问答记录内容包括提问信息、回答信息和评论信息,对问答记录内容清理后获得主题模型训练的语料库,根据语料库训练得到主题模型和问题标签特征;并利用回答者获得的投票数作为回答者的专业知识水平,利用用户访问问答社区的记录计算用户的活跃度;步骤2,基于主题模型计算用户主题分布、主题词项分布、用户主题专业知识分布和用户主题活跃度分布;其中,用户主题分布表示为θu,k,用户主题专业知识分布为φk,u,e,用户主题活跃度分布为δk,u,a,主题词项分布为小脚标中,u代表用户,k代表主题,e代表专业知识水平,a代表活跃度等级,w代表词项;步骤3,将为问题推荐回答者的问题转化为机器学习领域的分类问题,将步骤2所获得的概率分布转化为机器学习的特征向量,获得用户的主题特征、专业知识特征和活跃度特征;步骤4,将主题特征、专业知识特征、活跃度特征和问题标签特征转化为特征向量,作为机器学习的输入,通过机器学习得到回答者推荐模型;(二)利用回答者推荐模型为提问者推荐回答者,包括:步骤5,当问答社区中有提问者提出新的问题时,对该问题进行特征提取,获得问题主题的分布θq,k;步骤6,利用回答者推荐模型获得问题回答者的推荐列表。2.根据权利要求1所述的回答者推荐方法,其特征在于,所述的步骤一中,用户的活跃度s根据下面公式计算得到:

【专利技术属性】
技术研发人员:张莉王丽婷蒋竞黎功辉
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1