当前位置: 首页 > 专利查询>山西大学专利>正文

一种基于原子能级的射频线传输因子的测量装置及方法制造方法及图纸

技术编号:16777905 阅读:88 留言:0更新日期:2017-12-12 22:41
本发明专利技术涉及一种基于原子能级的射频线传输因子的测量装置及方法,本发明专利技术的目的是解决在现有的射频线传输因子测量过程中存在的测量误差大以及校准过程复杂的技术问题。本发明专利技术采用的技术方案是:碱金属原子在两个激光光源的作用下产生EIT光谱,EIT光谱在射频电场的作用下形成谱线的交叉点,读取射频源的电压值Vo,i计算谱线交叉点对应的电场强度值Eo,i=Vo,i/d(d为平行电极之间的距离),与理论电场值Ei相比较,即得到该交叉点对应射频线传输因子ti=Ei/Eo,I;对不同谱线交叉点的ti求平均可以进一步提高射频线传输因子t的精度。本发明专利技术实现了基于原子能级结构的自校准测量,不需要外部设备进行测量,不受外界环境的影响,整个方法实现起来十分简单。

A measuring device and method for radiofrequency transmission factor based on atomic energy level

The invention relates to a measuring device and method for RF transmission factor based on atomic level. The purpose of the invention is to solve the technical problems existing in the existing RF line transmission factor measurement process, such as large measurement error and complex calibration process. The technical proposal of the invention is: alkali metal atom EIT spectra in the two laser light source under the action of the EIT spectra of intersection lines in the RF electric field, voltage reading of the RF source value Vo, I electric field intensity calculation of line intersection points corresponding to the value of Eo, I = Vo, i/d (D is parallel to the distance between the electrodes, Ei) compared with the theory value of the electric field, cross point corresponds to the RF line transmission factor Ti = Ei/Eo, I is obtained; the different spectral line intersection Ti averaging can further improve the accuracy of T RF line transmission factor. The invention realizes the self calibration measurement based on the atomic level structure, does not need external devices to measure, and is not affected by the external environment. The whole method is very simple to implement.

【技术实现步骤摘要】
一种基于原子能级的射频线传输因子的测量装置及方法
本专利技术涉及测量射频线传输因子的技术,尤其涉及一种基于原子能级的射频线传输因子的测量装置及方法。
技术介绍
在射频信号传输系统中,如果射频传输线和信号源不能做到完全匹配,会导致高频电磁波在射频线传输过程中,发生信号的反射、干涉、振铃效应、天线效应、衰减、叠加等各种信号畸变的情况,因此射频线传输因子的测量效应非常重要。目前对射频线传输效率的测量主要采用网络分析仪,通过将射频线的两端分别接到网络分析的信号输出端和信号接收端,可以直接读出射频线传输效率。但是在实际测量之前,首先需要校准测量,由实测结果与理想结果比对,通过计算求出误差模型中的误差因子并存入计算机中,以便对被测件的测量结果进行误差修正,在每一频率点上都按此进行校准和修正,测量步骤和计算都十分复杂。而且理想的标准本身也需要由校准后的仪器提供,也会引入校准误差,导致测量的射频线传输因子不精确。
技术实现思路
本专利技术的目的是解决在现有的射频线传输因子测量过程中存在的测量误差大以及测量过程复杂的技术问题,提供了一种基于原子能级的射频线传输因子的测量装置及方法。为解决上述技术问题,本专利技术所采用的技术方案是:一种基于原子能级的射频线传输因子的测量装置,包括:碱金属原子样品池、第一激光光源、第二激光光源、第一双色镜、第二双色镜、光电探测器、第一偏振分光棱镜、第一半波片、第二偏振分光棱镜、第二半波片、射频源和射频传输线;所述第一激光光源为探测光光源,第一双色镜设在探测光光路上;所述第一偏振分光棱镜、第一半波片、碱金属原子样品池、第二半波片、第二偏振分光棱镜、第二双色镜和光电探测器依次序设在第一双色镜的反射光路上;所述第二激光光源为耦合光光源且设在第二双色镜的耦合光入射口,所述碱金属原子样品池为内置一对平行电极且充有碱金属原子蒸气的玻璃泡;所述射频源通过射频传输线连接在碱金属原子样品池中平行电极的两个接线端上。进一步地,所述碱金属原子为铯原子。一种基于上述射频线传输因子的测量装置的测量方法,包括如下步骤:(a)第一激光光源发出探测光,其频率锁定在碱金属原子的基态|g>和第一激发态|e>两个能级的共振位置,探测光经第一双色镜反射后进入第一偏振分光棱镜,输出水平偏振的探测光,再进入第一半波片改变其偏振方向,使探测光的偏振方向与射频源产生的射频电场方向形成一个夹角,通过第一半波片的探测光从碱金属原子样品池的一端入射到碱金属原子样品池中,并透过碱金属原子样品池进入第二半波片、第二偏振分光棱镜和第二双色镜,最后入射到光电探测器上进行探测;(b)第二激光光源发出耦合光,耦合光经第二双色镜反射后进入第二偏振分光棱镜,输出水平偏振的耦合光,再进入第二半波片使其偏振方向与探测光的偏振方向相同,通过第二半波片的耦合光从碱金属原子样品池的另一端入射到碱金属原子样品池中,与改变偏振方向的探测光在碱金属原子样品池中反向共线传播;(c)耦合光的频率在碱金属原子的第一激发态|e>与里德堡能级nD态的共振跃迁线附近扫描,使光电探测器探测到无多普勒背景的EIT光谱;(d)射频源发出的射频信号经过射频传输线加到碱金属原子样品池中的平行电极上,在射频电场的作用下,(c)步骤中所述的EIT光谱形成多个谱线的交叉点,读取其中一个交叉点对应的射频源的输出电压值Vo,i,根据公式Eo,i=Vo,i/d计算电场强度值Eo,i,式中,d为碱金属原子样品池中两平行电极之间的距离;将上述计算的电场强度值Eo,i与理论电场值Ei相比较,即得到一个谱线交叉点对应的射频线传输因子ti,对不同谱线交叉点的ti作平均值,即得到射频线传输因子t。进一步地,所述射频源的频率范围为DC-1GHz。本专利技术的有益效果是:本专利技术采用原子能级的交叉点实现射频线传输因子的测量。在射频电场作用下,里德堡原子的EIT光谱形成多个谱线的交叉点i,读取一个交叉点对应的射频源的输出电压值Vo,i,计算该交叉点对应的电场强度值为Eo,i=Vo,i/d(d为平行电极之间的距离)。将电场强度计算值Eo,i与理论电场值Ei比较,即得射频线传输因子ti=Ei/Eo,I,对不同谱线交叉点的ti作平均可以进一步提高射频线传输因子t的精度。本专利技术实现了基于原子能级结构的自校准测量,不需要外部设备进行测量,不受外界环境的影响,克服了传统测量方法误差大、校准过程复杂的缺点,整个方法实现起来十分简单,采用装有碱金属原子的蒸气池作为介质,对射频电场没有干扰,易于实现微型化,适于集成化和广泛推广。附图说明图1是本专利技术装置的结构示意图;图2是本专利技术铯原子样品池的结构示意图;图3是射频电场中的EIT光谱在一些特定的场强下形成谱线的交叉点的示意图。具体实施方式下面结合附图和实施例对本专利技术进行进一步说明。如图1和图2所示,本实施例中的一种基于原子能级的射频线传输因子的测量装置,包括:铯原子样品池1、第一激光光源2、第二激光光源3、第一双色镜4、第二双色镜5、光电探测器6、第一偏振分光棱镜7、第一半波片8、第二偏振分光棱镜9、第二半波片10、射频源11和射频传输线12;所述第一激光光源2为探测光光源,第一双色镜4设在探测光光路上;所述第一偏振分光棱镜7、第一半波片8、铯原子样品池1、第二半波片10、第二偏振分光棱镜9、第二双色镜5和光电探测器6依次序设在第一双色镜4的反射光路上;所述第二激光光源3为耦合光光源且设在第二双色镜5的耦合光入射口,所述铯原子样品池1为内置一对平行电极且充有铯原子蒸气的玻璃铯泡;所述射频源11通过射频传输线12连接在铯原子样品池1中平行电极的两个接线端上。一种基于上述实施例中射频线传输因子的测量装置的测量方法,包括如下步骤:(a)第一激光光源2发出852nm的激光作为探测光,其频率锁定在铯原子的基态6S1/2和第一激发态6P3/2两个能级的共振位置,探测光经第一双色镜4反射后进入第一偏振分光棱镜7,输出水平偏振的探测光,再进入第一半波片8改变其偏振方向,使探测光的偏振方向与射频源11产生的射频电场方向形成一个夹角,通过第一半波片的探测光从铯原子样品池1的一端入射到铯原子样品池1中,并透过铯原子样品池1进入第二半波片10、第二偏振分光棱镜9和第二双色镜5,最后入射到光电探测器6上进行探测;(b)第二激光光源3发出510nm的激光作为耦合光,耦合光经第二双色镜5反射后进入第二偏振分光棱镜9,输出水平偏振的耦合光,再进入第二半波片10使其偏振方向与探测光的偏振方向相同,通过第二半波片的耦合光从铯原子样品池1的另一端入射到铯原子样品池1中,与改变偏振方向的探测光在铯原子样品池1中反向共线传播;(c)耦合光的频率在铯原子的第一激发态6P3/2与里德堡能级nD态的共振跃迁线附近扫描,使光电探测器6探测到无多普勒背景的EIT光谱;(d)射频源11发出的射频信号经过射频传输线12加到铯原子样品池1中的平行电极上,在射频电场的作用下,(c)步骤中所述的EIT光谱形成多个谱线的交叉点,如图3所示,读取其中一个交叉点对应的射频源11的输出电压值Vo,i,根据公式Eo,i=Vo,i/d计算电场强度值Eo,i,式中,d为铯原子样品池1中两平行电极之间的距离;将上述计算的电场强度值Eo,i与理论电场值Ei相比较,本文档来自技高网...
一种基于原子能级的射频线传输因子的测量装置及方法

【技术保护点】
一种基于原子能级的射频线传输因子的测量装置,其特征在于,包括:碱金属原子样品池(1)、第一激光光源(2)、第二激光光源(3)、第一双色镜(4)、第二双色镜(5)、光电探测器(6)、第一偏振分光棱镜(7)、第一半波片(8)、第二偏振分光棱镜(9)、第二半波片(10)、射频源(11)和射频传输线(12);所述第一激光光源(2)为探测光光源,第一双色镜(4)设在探测光光路上;所述第一偏振分光棱镜(7)、第一半波片(8)、碱金属原子样品池(1)、第二半波片(10)、第二偏振分光棱镜(9)、第二双色镜(5)和光电探测器(6)依次序设在第一双色镜(4)的反射光路上;所述第二激光光源(3)为耦合光光源且设在第二双色镜(5)的耦合光入射口,所述碱金属原子样品池(1)为内置一对平行电极且充有碱金属原子蒸气的玻璃泡;所述射频源(11)通过射频传输线(12)连接在碱金属原子样品池(1)中平行电极的两个接线端上。

【技术特征摘要】
1.一种基于原子能级的射频线传输因子的测量装置,其特征在于,包括:碱金属原子样品池(1)、第一激光光源(2)、第二激光光源(3)、第一双色镜(4)、第二双色镜(5)、光电探测器(6)、第一偏振分光棱镜(7)、第一半波片(8)、第二偏振分光棱镜(9)、第二半波片(10)、射频源(11)和射频传输线(12);所述第一激光光源(2)为探测光光源,第一双色镜(4)设在探测光光路上;所述第一偏振分光棱镜(7)、第一半波片(8)、碱金属原子样品池(1)、第二半波片(10)、第二偏振分光棱镜(9)、第二双色镜(5)和光电探测器(6)依次序设在第一双色镜(4)的反射光路上;所述第二激光光源(3)为耦合光光源且设在第二双色镜(5)的耦合光入射口,所述碱金属原子样品池(1)为内置一对平行电极且充有碱金属原子蒸气的玻璃泡;所述射频源(11)通过射频传输线(12)连接在碱金属原子样品池(1)中平行电极的两个接线端上。2.根据权利要求1所述的一种基于原子能级的射频线传输因子的测量装置,其特征在于,所述碱金属原子为铯原子。3.一种基于权利要求1-2中射频线传输因子的测量装置的测量方法,其特征在于,包括如下步骤:(a)第一激光光源(2)发出探测光,其频率锁定在碱金属原子的基态|g>和第一激发态|e>两个能级的共振位置,探测光经第一双色镜(4)反射后进入第一偏振分光棱镜(7),输出水平偏振的探测光,再进入第一半波片(8)改变其偏振方向,使探测光的偏振方向与射频源(11)产生的射频电场方...

【专利技术属性】
技术研发人员:赵建明焦月春贾锁堂
申请(专利权)人:山西大学
类型:发明
国别省市:山西,14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1