一种基于表面等离激元杂化波导的偏振分束器及分束方法技术

技术编号:16345163 阅读:32 留言:0更新日期:2017-10-03 22:04
本发明专利技术公开了一种基于表面等离激元杂化波导的偏振分束器和分束方法,其中,所述偏振分束器包括:壳体、和设置在所述壳体内的第一光波导和第二光波导;所述第一光波导和第二光波导平行、非对称、间隔设置;第一光波导和第二光波导之间的间隔形成纳米狭缝;第一光波导和第二光波导均由金属薄膜、低折射率薄膜、高折射率薄膜和纳米槽构成,所述壳体与所述第一光波导和第二光波导之间的空腔内填充空气。本发明专利技术所述的基于表面等离激元杂化波导的偏振分束器,具有超小尺寸、超低串扰、工作带宽大、利于集成等多个优点。

【技术实现步骤摘要】
一种基于表面等离激元杂化波导的偏振分束器及分束方法
本专利技术属于纳米光子学
,尤其涉及一种基于表面等离激元杂化波导的偏振分束器及分束方法。
技术介绍
表面等离激元是金属和介质界面上自由电子集体振荡的电磁场模式,可以沿着金属和介质界面传播。表面等离激元超小的亚波长模式面积和局域共振特性使其在众多领域具有广泛的实际应用,如,纳米尺度上的光操控、单分子水平的生物探测、亚波长孔径的光透射增强和突破衍射极限的高分辨率光学成像等。随着众多的纳米器件设计方案被提出,人们迫切希望能够利用表面等离激元的性质,在纳米尺度上实现开发出新型器件。偏振分束器能够将TE模式(电矢量与传播方向垂直)和TM模式(磁矢量与传播方向垂直)的光波分开传播,是纳米光子学领域光子芯片的关键器件,引起了研究者广泛的兴趣,一直是研究的热点。使TE和TM两种不同偏振光分束传播到不同端口,对片上光通信、光互联、光计算等都具有重要意义。然而,现有的基于硅基偏振的分束器的尺寸通常在几十微米大小,工作带宽较窄且难以从近红外扩展到可见光波段。
技术实现思路
本专利技术的技术解决问题:克服现有技术的不足,提供一种基于表面等离激元杂化波导的偏振分束器及分束方法,具有超小尺寸、超低串扰、工作带宽大、利于集成等多个优点。为了解决上述技术问题,本专利技术公开了一种基于表面等离激元杂化波导的偏振分束器,包括:壳体、和设置在所述壳体内的第一光波导和第二光波导;所述第一光波导和第二光波导平行、非对称、间隔设置;其中,所述第一光波导和第二光波导之间的间隔形成纳米狭缝;所述第一光波导包括:第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜,以及贯穿所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜的第一纳米槽;所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜由下至上依次设置;其中,入射光射入侧为结构的下方;所述第二光波导包括:第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜,以及贯穿所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜的第二纳米槽;所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜由下至上依次设置;所述第一光波导和第二光波导的外形尺寸参数相同;所述第一金属薄膜与第二金属薄膜等厚;所述第一低折射率薄膜与第二低折射率薄膜等厚;所述第一高折射率薄膜与二高折射率薄膜等厚;所述第一纳米槽与所述第二纳米槽的结构尺寸参数不同;所述壳体与所述第一光波导和第二光波导之间的空腔内填充空气。在上述基于表面等离激元杂化波导的偏振分束器中,金属薄膜的厚度大于等于200nm;低折射率薄膜的厚度处于40nm~500nm范围内;高折射率薄膜的厚度处于40nm~500nm范围内。在上述基于表面等离激元杂化波导的偏振分束器中,低折射率薄膜为:折射率大于等于1的透明绝缘介质;高折射率薄膜为:折射率大于所述低折射率薄膜的折射率的透明绝缘介质。在上述基于表面等离激元杂化波导的偏振分束器中,所述基于表面等离激元杂化波导的偏振分束器的工作波长处于700nm~900nm范围内。在上述基于表面等离激元杂化波导的偏振分束器中,所述纳米狭缝的宽度处于200nm~500nm范围内;所述第一纳米槽的槽宽处于40nm~800nm范围内;所述第二纳米槽的槽宽处于40nm~800nm范围内;所述第一纳米槽与所述纳米狭缝之间的中心距离处于40nm~800nm范围内;所述第二纳米槽与所述纳米狭缝之间的中心距离处于40nm~800nm范围内。相应的,本专利技术还公开了一种基于表面等离激元杂化波导的分束方法,所述方法应用于基于表面等离激元杂化波导的偏振分束器,包括:选择电场方向垂直或平行于纳米狭缝的线偏振紧聚焦高斯光作为入射光;将所述入射光从所述偏振分束器底面的纳米狭缝处射入;通过所述偏振分束器将所述入射光分解为TE模式和TM模式;其中,所述TE模式和TM模式为两个彼此独立的本征模式;耦合进入偏振分束器的第一光波导的TM模式的光与经由第二光波导的F-P腔反射的同一偏振光干涉相消,形成完美消光;同时,耦合进入偏振分束器的第二光波导的TM模式的光与经由第一光波导的F-P腔反射的同一偏振光干涉相长,达到表面等离激元的单向激发的相位和振幅条件;或,耦合进入偏振分束器的第二光波导的TE模式的光与经由第一光波导的F-P腔反射的同一偏振光干涉相消,形成完美消光;同时,耦合进入偏振分束器的第一光波导的TE模式的光与经由第二光波导的F-P腔反射的同一偏振光干涉相长,达到表面等离激元的单向激发的相位和振幅条件;其中,所述第一光波导的F-P腔由第一纳米槽与纳米狭缝之间的波导形成;所述第二光波导的F-P腔由第二纳米槽与纳米狭缝之间的波导形成。在上述基于表面等离激元杂化波导的分束方法中,TE模式的光局域在偏振分束器的高折射率薄膜中;TM模式的光局域在偏振分束器的金属薄膜与低折射率薄膜的界面处。在上述基于表面等离激元杂化波导的分束方法中,所述基于表面等离激元杂化波导的分束方法,还包括:设置第一纳米槽和第二纳米槽的宽度和深度,以用于调节偏振分束器的反射率和透射率;分别设置第一纳米槽和第二纳米槽距纳米狭缝的距离,以用于调节干涉光之间的相位差;设置纳米狭缝的宽度,以用于调节第一光波导和第二光波导的耦合效率。本专利技术具有以下优点:本专利技术所述的基于表面等离激元杂化波导的偏振分束器及分束方法,基于表面等离激元杂化波导实现,具有更小的器件尺寸;并且基于表面等离激元杂化波导的非对称纳米槽结构容易制备、灵活度高,保证了该器件具有超小尺寸(尺寸仅为若干微米,厚度仅为几百纳米),易于在芯片上集成;信噪比高、超低串扰、工作带宽大、器件性能稳定、实用性强;为超快速超宽带信号处理提供了新方法。此外,结构简单,可利用现有聚焦离子束刻蚀系统直接制备,可灵活调整参数,满足不同工作波长的需求。附图说明图1是本专利技术实施例中一种基于表面等离激元杂化波导的偏振分束器的结构示意图;图2是本专利技术实施例中一种基于表面等离激元杂化波导的分束方法的步骤流程图;图3是本专利技术实施例中一种表面等离激元杂化波导的模式分布图;图4是本专利技术实施例中一种TM模式和TE模式的传播效率图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术公共的实施方式作进一步详细描述。参照图1,示出了本专利技术实施例中一种基于表面等离激元杂化波导的偏振分束器的结构示意图。在本实施例中,所述基于表面等离激元杂化波导的偏振分束器,包括:壳体100、和设置在所述壳体100内的第一光波导200和第二光波导300。如图1,所述第一光波导200和第二光波导300平行、非对称、间隔设置。其中,所述第一光波导200和第二光波导300之间的间隔形成纳米狭缝400。在本实施例中,所述第一光波导200具体可以包括:第一金属薄膜201、第一低折射率薄膜202和第一高折射率薄膜203,以及贯穿所述第一金属薄膜201、第一低折射率薄膜202和第一高折射率薄膜203的第一纳米槽204;其中,所述第一金属薄膜201、第一低折射率薄膜202和第一高折射率薄膜203由下至上依次设置。类似的,所述第二光波导300具体可以包括:第二金属薄膜301、第二低折射率薄膜302和第二高折射率薄膜303,以及贯穿所述第二金属薄膜301、第二低折射率薄膜302和第二高本文档来自技高网...
一种基于表面等离激元杂化波导的偏振分束器及分束方法

【技术保护点】
一种基于表面等离激元杂化波导的偏振分束器,其特征在于,包括:壳体、和设置在所述壳体内的第一光波导和第二光波导;所述第一光波导和第二光波导平行、非对称、间隔设置;其中,所述第一光波导和第二光波导之间的间隔形成纳米狭缝;所述第一光波导包括:第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜,以及贯穿所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜的第一纳米槽;所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜由下至上依次设置;其中,入射光射入侧为结构的下方;所述第二光波导包括:第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜,以及贯穿所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜的第二纳米槽;所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜由下至上依次设置;所述第一光波导和第二光波导的外形尺寸参数相同;所述第一金属薄膜与第二金属薄膜等厚;所述第一低折射率薄膜与第二低折射率薄膜等厚;所述第一高折射率薄膜与二高折射率薄膜等厚;所述第一纳米槽与所述第二纳米槽的结构尺寸参数不同;所述壳体与所述第一光波导和第二光波导之间的空腔内填充空气。

【技术特征摘要】
1.一种基于表面等离激元杂化波导的偏振分束器,其特征在于,包括:壳体、和设置在所述壳体内的第一光波导和第二光波导;所述第一光波导和第二光波导平行、非对称、间隔设置;其中,所述第一光波导和第二光波导之间的间隔形成纳米狭缝;所述第一光波导包括:第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜,以及贯穿所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜的第一纳米槽;所述第一金属薄膜、第一低折射率薄膜和第一高折射率薄膜由下至上依次设置;其中,入射光射入侧为结构的下方;所述第二光波导包括:第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜,以及贯穿所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜的第二纳米槽;所述第二金属薄膜、第二低折射率薄膜和第二高折射率薄膜由下至上依次设置;所述第一光波导和第二光波导的外形尺寸参数相同;所述第一金属薄膜与第二金属薄膜等厚;所述第一低折射率薄膜与第二低折射率薄膜等厚;所述第一高折射率薄膜与二高折射率薄膜等厚;所述第一纳米槽与所述第二纳米槽的结构尺寸参数不同;所述壳体与所述第一光波导和第二光波导之间的空腔内填充空气。2.根据权利要求1所述的基于表面等离激元杂化波导的偏振分束器,其特征在于,金属薄膜的厚度大于等于200nm;低折射率薄膜的厚度处于40nm~500nm范围内;高折射率薄膜的厚度处于40nm~500nm范围内。3.根据权利要求1所述的基于表面等离激元杂化波导的偏振分束器,其特征在于,低折射率薄膜为:折射率大于等于1的透明绝缘介质;高折射率薄膜为:折射率大于所述低折射率薄膜的折射率的透明绝缘介质。4.根据权利要求1所述的基于表面等离激元杂化波导的偏振分束器,其特征在于,所述基于表面等离激元杂化波导的偏振分束器的工作波长处于700nm~900nm范围内。5.根据权利要求1所述的基于表面等离激元杂化波导的偏振分束器,其特征在于,所述纳米狭缝的宽度处于200nm~500nm范围内;所述第一纳米槽的槽宽处于40nm~800nm范围内;所述第二...

【专利技术属性】
技术研发人员:路翠翠郭伟轩陈睿轩崔方明
申请(专利权)人:中国空间技术研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1