砂型铸造稀土镁合金及其制备方法技术

技术编号:16298984 阅读:79 留言:0更新日期:2017-09-26 17:17
本发明专利技术公开了一种砂型铸造镁稀土合金及其制备方法,所述镁合金的组分及其质量百分比为:8.0~14.0wt.%Gd,0.01~0.85wt.%Zn,0.3~0.7wt.%Zr,杂质元素Si、Fe、Cu和Ni的总量小于0.2wt.%,余量为Mg。对熔铸得到砂型铸造镁稀土合金进行480~530℃×8~16小时的固溶处理,淬水(25~80℃)后进行200~225℃×16~128小时的单级时效处理,可以得到力学性能优良的镁合金。本发明专利技术通过少量的Zn元素代替Y元素,有效的降低了合金熔铸过程中的氧化倾向,减少了氧化皮类铸造缺陷的发生概率;同时,通过激活室温变形时非基面滑移系和形成Mg‑Gd‑Zn基面析出相,在不降低合金强度的情况下显著的提高了材料的室温塑性。

Sand casting rare earth magnesium alloy and preparation method thereof

The invention discloses a sand casting rare earth magnesium alloy and its preparation method, composition and quality percentage of the magnesium alloy is 8 ~ 14.0wt.%Gd, 0.01 ~ 0.85wt.%Zn, 0.3 ~ 0.7wt.%Zr, Si, Fe, Cu impurities and the amount of Ni is less than 0.2wt.%, the rest is Mg. For casting the 480 to 530 DEG C * 8 ~ 16 hours of solid solution treatment sand magnesium rare earth alloy casting, quenching water (25 to 80 DEG C) after 200 to 225 DEG C * 16 ~ 128 hours of single aging treatment, magnesium alloy with excellent mechanical properties can be obtained. The present invention by a small amount of Zn element to replace the Y elements, effectively reduce the oxidation tendency of alloy casting process, reduce the probability of occurrence of oxide skin type casting defects; at the same time, through the activation of non basal slip systems at room temperature and the formation of Mg Gd Zn surface precipitates, without reducing the strength of the alloy under the condition of significant improvement of ductility at room temperature.

【技术实现步骤摘要】
砂型铸造稀土镁合金及其制备方法
本专利技术涉及一种砂型铸造稀土镁合金及其制备方法,属于金属结构材料

技术介绍
作为最轻的金属结构材料,镁合金具有比强度、比刚度高,减震性好等优点,广泛应用于航空航天、交通、3C领域等。Mg-Gd-Y系由于具有良好室温强度和耐热性能,近年来在航空航天领域获得了广泛的应用,如2016版的国家标准中的VW103Z合金:Mg-10Gd-3Y-Zr(wt.%)合金。但这类合金在熔铸过程中容易形成氧化皮,氧化皮的存在显著降低了VW103Z合金铸件的力学性能和锻件的成品率,严重限制了Mg-Gd-Y合金的广泛应用。这类合金包括,《高强度耐热镁合金及其制备方法》(专利号:CN200510025251.6)公开的:Mg-(6~15)Gd-(1~6)Y-(0.35~0.8)Zr-(0~1.5)Ca镁稀土合金,《高强耐热稀土镁合金》(专利号:CN200610031169.9)公开的:Mg-(2~10)Gd-(3~12)Y镁稀土合金,《一种镁合金及其制备方法》(专利号:CN200610144003.8)公开的:Mg-(7~11)Gd-(2~5)Y-(0~1.0)Zn-(0.3~0.6)Zr镁稀土合金等。这些合金中都含有稀土元素Y,Y元素在铸造成型过程中容易富集在镁合金熔体表面,形成富Y的氧化层,熔铸过程中一旦出现两股镁合金熔体交汇,就会将富Y的氧化层卷入到铸件中形成氧化物夹杂。这类氧化皮缺陷是Mg-Gd-Y系合金铸件和锻件的成品率较低的主要原因之一,也是含Y镁合金WE43(Mg-4Y-2Nd-1RE,wt.%)、WE54铸造成品率低下的主要原因之一。除了容易形成氧化皮之外,Mg-Gd-Y系合金塑性较低是其应用受限的另外一个主要原因。VW103Z镁稀土合金铸件的室温延伸率在2.5~3.0%之间,满足不了高品质镁合金部件对塑性的要求。
技术实现思路
针对上述Mg-Gd-Y-Zr镁稀土合金的两个主要问题,本专利技术通过少量的Zn元素代替Y元素实现在不降低合金强度的情况下,提高材料的塑性,降低其铸造过程中氧化皮生成倾向。本专利技术是通过以下技术方案实现的:第一方面,本专利技术提供了一种砂型铸造稀土镁合金,其包含按重量百分数计的如下组分:Gd:8.0~14.0%,Zn:0.01~0.85%,Zr:0.3~0.7%,余量为镁和不可避免的杂质,所述杂质的重量百分数总和不超过0.2%。本专利技术采用Gd(钆)为第一组分,研究表明,当Gd<8%时,材料的强度较低;当Gd>14%时,材料的塑性较低。根据实验研究结果,Gd元素的含量为8~14wt.%。本专利技术采用Zn(锌)为第二组分,研究表明,微量的Zn元素加入Mg-Gd合金体系时,Zn以固溶原子的形式存在于镁基体和Mg-Gd析出相中,可以显著激发镁合金室温变形时的非基面滑移系,显著提高材料的塑性;微量Zn元素加入Mg-Gd合金体系时,除了上述对非基面滑移系的影响外,Zn与Gd、Mg元素形成基面析出相或者LPSO结构,可以同时提高材料的强度和改善材料的塑性;进一步提高Zn元素的含量时,>1wt.%,Zn与Gd在凝固过程中即会形成Mg-Gd-Zn三元相,这类相在随后的固溶处理中难以完全固溶到基体中,在提高材料强度同时会损伤材料的塑性。因此,根据Zn元素对合金强度与塑性的综合影响,Zn元素的含量为0.01~0.85wt.%。本专利技术采用Zr(锆)为第三组分,与常规含Zr镁合金类似,Zr在Mg-Gd-Zn合金中的作用主要为晶粒细化,Zr元素的含量为0.3~0.7wt.%。作为优选方案,所述杂质元素包含硅、铁、铜、镍中的至少一种,且硅元素的含量不超过0.01%、铁元素的含量不超过0.01%、铜元素的含量不超过0.03%、镍元素的含量不超过0.005%。第二方面,本专利技术还提供了一种如前述的砂型铸造稀土镁合金的制备方法,其包括如下步骤:利用砂型铸造的方法制备合金锭;将所述合金锭在480~530℃下进行固溶处理后,在水中进行淬火:研究表明,固溶温度低于480℃时,合金中第二相不能够完全固溶,会降低时效处理时的强化效果;固溶温度高于530℃时,合金中存在过烧和晶粒异常粗化的风险,会严重降低材料的强塑性。在200~225℃下进行单级时效处理,得到所述砂型铸造镁稀土合金:研究表明,时效温度低于200℃或者高于225℃时材料的屈服强度较低,200~225℃温度段时效处理可以获得最佳的屈服强度。作为优选方案,所述合金锭的制备方法包括如下步骤:将纯镁、纯锌、Mg-Gd中间合金和Mg-Zr中间合金分别在200℃下预热3h以上;将预热后的纯镁在保护气氛中进行熔化,至720℃后,加入预热后的纯锌以及Mg-Gd中间合金;待Mg-Gd中间合金熔化后,升温至760~780℃,加入预热后的Mg-Zr中间合金,待Mg-Zr中间合金熔化后撇去浮渣,搅拌后降温至750~755℃,精炼后在780℃进行静置;冷却至690~740℃后再次撇去浮渣,进行砂型重力浇铸,得到合金锭。作为优选方案,所述淬火的温度为25~80℃。作为优选方案,所述保护气氛为SF6和CO2的混合气体。作为优选方案,所述固溶处理的时间为8~16h。作为优选方案,所述单级时效处理的时间为16~128h。与现有技术相比,本专利技术具有如下的有益效果:1、本专利技术通过去除Y元素,显著降低了合金熔铸过程中的氧化倾向,可以减少合金熔铸过程中氧化皮的卷入从而减少铸造缺陷的发生概率,同时,Y元素的去除,显著降低了稀土元素在熔铸过程中的烧损,降低材料成分控制的难度,合金成分更加稳定;2、本专利技术引入少量的Zn元素,通过Zn元素激活室温变形时的非基面滑移系和形成Mg-Gd-Zn基面析出相的方式,在不降低合金强度的同时,显著的提高了材料的室温塑性和室温强度,合金最优的室温强度可以与含Ag元素的Mg-Gd-Ag-Zr合金媲美。具体实施方式下面结合具体实施例对本专利技术进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本专利技术,但不以任何形式限制本专利技术。应当指出的是,对本领域的普通技术人员来说,在不脱离本专利技术构思的前提下,还可以做出若干变形和改进。这些都属于本专利技术的保护范围。实施例1本实施例涉及一种砂型铸造镁稀土合金,所述镁合金的组分及其质量百分比为:14.0wt.%Gd、0.8wt.%Zn、0.5wt.%Zr,杂质元素Si、Fe、Cu和Ni的含量小于0.2wt.%,余量为Mg(wt.%是指组分占所制备的镁合金总质量的百分比,总质量为Mg、Zn和各种中间合金的质量和)。本实施例涉及常规镁稀土合金的熔铸方法和本专利技术中的合金热处理方法:其中,熔铸工序在SF6和CO2混合气体保护条件下进行,步骤如下:(1)烘料:将纯镁、纯锌、Mg-Gd/Mg-Zr中间合金在200℃预热3小时以上;(2)熔镁:将烘干后的纯镁放入有SF6/CO2气体保护的坩埚电阻炉中熔化;(3)加Zn和Gd:当镁液温度达到720℃后,往镁液中直接加入纯锌和Mg-25wt.%Gd中间合金,使Zn元素在制备的镁合金总质量中占0.8wt.%,Gd元素占14.0wt.%;(4)待Mg-Gd中间合金熔化后,熔体温度升至760~780℃时加入Mg-30wt.%Zr中间合金,待Mg-Zr中间合金熔化后撇去表面浮渣,搅本文档来自技高网
...

【技术保护点】
一种砂型铸造稀土镁合金,其特征在于,包含按重量百分数计的如下组分:Gd:     8.0~14.0%,Zn:     0.01~0.85%,Zr:     0.3~0.7%,余量为镁和不可避免的杂质,所述杂质的重量百分数总和不超过0.2%。

【技术特征摘要】
1.一种砂型铸造稀土镁合金,其特征在于,包含按重量百分数计的如下组分:Gd:8.0~14.0%,Zn:0.01~0.85%,Zr:0.3~0.7%,余量为镁和不可避免的杂质,所述杂质的重量百分数总和不超过0.2%。2.如权利要求1所述的砂型铸造稀土镁合金,其特征在于,所述杂质元素包含硅、铁、铜、镍中的至少一种,且硅元素的含量不超过0.01%、铁元素的含量不超过0.01%、铜元素的含量不超过0.03%、镍元素的含量不超过0.005%。3.一种如权利要求1所述的砂型铸造稀土镁合金的制备方法,其特征在于,包括如下步骤:利用砂型铸造的方法制备合金锭;将所述合金锭在480~530℃下进行固溶处理后,在水中进行淬火;在200~225℃下进行单级时效处理,得到所述砂型铸造镁稀土合金。4.如权利要求3所述的砂型铸造稀土镁合金的制备方法,其特征在于,所述合金锭的制备方法包括如下步骤:将纯镁、纯锌、Mg...

【专利技术属性】
技术研发人员:付彭怀王迎新王丹彭立明丁文江
申请(专利权)人:上海交通大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1