煤矸石近红外图像识别技术制造技术

技术编号:16176069 阅读:56 留言:0更新日期:2017-09-09 03:20
一种煤矸石近红外图像识别技术,属于图像处理技术领域,其特征在于是一种近红外视觉下的目标识别技术,具体步骤为:1)逐个提取目标内的灰度值信息,包括利用Canny边缘检测算子提取目标边缘和分别对边缘以内的灰度值信息进行提取。2)分别对边缘内的灰度值信息进行统计分析。3)对目标做出判断。本算法以提取目标的边缘为基础,逐个对目标进行分析,有效地避免了背景对于识别结果的干扰,在近红外视觉下拉大了煤矸石和煤炭的特征区间的差异,即便在可视条件较差的情形下依然能够保证算法的鲁棒性,准确地识别目标。

【技术实现步骤摘要】
煤矸石近红外图像识别技术
本专利技术一种煤矸石近红外图像识别技术,属于图像处理
,特别涉及一种近红外视觉下的目标识别技术。
技术介绍
目标识别技术是计算机视觉中的核心部分,准确地识别目标是顺利地进行后续图像处理的前提。目前目标识别技术广泛地应用于监控安检、武器制导、工业质检等领域。目标识别的本质是通过机器视觉设备捕捉目标的图像特征,经过算法的学习分析对捕捉到的对象进行判断,与同视场下的其它目标及环境区分开来。煤矸石是远古植被在煤化过程中伴生的一种废弃矿物,质地坚硬不易分拣,在井下运输过程中会划伤甚至刺穿输送胶带,因此将煤矸石有效地分拣出来是十分必要的,利用图像处理中的目标识别技术是一种低成本、高效、环保的分拣方式。目前计算机视觉识别煤矸石主要是依靠可见光CCD采集到的图像利用煤矸石和煤炭的灰度差异来识别出煤矸石(巩文迪,卢兆林,唐全,刘佳毅.灰度自适应边缘检测在煤矸石分选中的应用[J].煤炭技术,2013(10):95-96)(牛清娜.基于边缘检测算法的煤矸石自动分选技术研究[J].河北工程大学学报,2012,29(4):98-100),然而在可见光视觉下二者的灰度值差异会受到本文档来自技高网...
煤矸石近红外图像识别技术

【技术保护点】
一种煤矸石近红外图像识别技术,其特征在于是一种去除了背景干扰,利用近红外视觉将煤矸石和煤炭的灰度差异拉大,对煤矸石进行准确识别的近红外图像识别技术,本专利技术在进行图像的预处理的基础上,在本技术进行处理之前,当前帧图像中被识别目标的大小、位置和边缘已经确定的条件下,具体实现步骤如下:步骤1:逐个提取每帧图像中各个目标内的灰度值信息,1)设矩阵A=[aij],为t时刻下图像采集设备捕捉到的图像内的灰度信息构成的矩阵,aij代表矩阵中像素点的灰度值,i=1,2,…,r,j=1,2,…,c,经过二值化处理,利用Canny边缘检测算子检测出图像内目标的边缘,用E=[eij]表示,得到矩阵E是提取边缘以...

【技术特征摘要】
1.一种煤矸石近红外图像识别技术,其特征在于是一种去除了背景干扰,利用近红外视觉将煤矸石和煤炭的灰度差异拉大,对煤矸石进行准确识别的近红外图像识别技术,本发明在进行图像的预处理的基础上,在本技术进行处理之前,当前帧图像中被识别目标的大小、位置和边缘已经确定的条件下,具体实现步骤如下:步骤1:逐个提取每帧图像中各个目标内的灰度值信息,1)设矩阵A=[aij],为t时刻下图像采集设备捕捉到的图像内的灰度信息构成的矩阵,aij代表矩阵中像素点的灰度值,i=1,2,…,r,j=1,2,…,c,经过二值化处理,利用Canny边缘检测算子检测出图像内目标的边缘,用E=[eij]表示,得到矩阵E是提取边缘以内的灰度值的前提;设向量组αi=(qi1,qi2,...,qic),i=1,2,…,r,其中j=1,2,…,c,设向量组βi=(ai1,ai2,...,aic),i=1,2,…,r,即将矩阵A中每一行当作一个向量,则灰度信息矩阵包含单个检测目标的轮廓内所有的灰度值,其中diag(αi)是向量αi构成的c×c型的对角矩阵;2)设EC为图像中多个目标经过预处理得到的边缘信息矩阵,按照图像中每个像素的8邻域搜索图像,可以得到该图像各个连通域的信息,即分离出图像中每个被检测目标的边缘,设为矩阵EC中一个被检测目...

【专利技术属性】
技术研发人员:乔铁柱于斌超庞宇松阎高伟吕玉祥
申请(专利权)人:太原理工大学
类型:发明
国别省市:山西,14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1