The invention belongs to the technical field of emergency power supply, in particular to a N+M redundant UPS system composed of a distributed multi subsystem. The paper presents an online initiative to battery automatic detection and maintenance of the technical scheme, the coordinated control by priority sequence automatic generation of multiple subsystems, realize the battery of the UPS unit subsystem on maintenance of charge and discharge, and centralized state information of each battery monitor monitoring battery string by unit the A subsystem battery through the system controller according to the preset parameters or program through the display and control panel system and remote communication interface for setting parameters and strategies, monitoring and analysis of their respective unit subsystem energy and load power parameters and monitoring analysis of the collected battery battery monitor status signal and to judge the control command generation subsystem. To realize the automatic monitoring and analysis, automatic maintenance, automatic adjustment charge and discharge power, The location of the storage battery is automatically prompted, the healthy operation of the battery string is ensured, the availability and the safety of the battery string are greatly improved, and the service life of the accumulator is prolonged.
【技术实现步骤摘要】
一种分布式多子系统组成的N+M冗余UPS系统
本专利技术属于应急供电电源
,具体涉及一种分布式多子系统组成的N+M冗余UPS系统。
技术介绍
众所周知作为应急供电电源的UPS被广泛应用于各行业部门,为关键负载提供了电源保障,其工作稳定性、安全性极其重要。而由于用户在使用过程中存在对UPS供电系统的管理不当、维护不到位或蓄电池老化、容量配置不合适等问题,容易造成UPS供电系统线路短路、蓄电池击穿等故障,甚至导致火灾的发生,造成安全事故和重大损失。国家专利局公布了申请号201510149311.9《不间断电源的远程维护装置》其在
技术介绍
中记载了“[0003]UPS工作状态需要靠厂站值班员定期巡视变电站设备获得。然而随着电网发展,变电站数量增加,导致人工巡视周期延长。一旦UPS蓄电池发生故障,仅靠人工巡视很难及时发现,这会影响变电站内RTU的安全运行。而且在UPS的使用过程中,每年至少需要对蓄电池进行一次充放电维护工作,人工进行充放电维护工作耗费人力物力。”此技术方案只监测蓄电池组串端电压,不能监测每一个蓄电池的健康与工作状况,而且蓄电池维护的充放电也只是调节电力 ...
【技术保护点】
一种分布式多子系统组成的N+M冗余UPS系统,包括:单元A子系统控制器(1A)、单元A子系统蓄电池集中监控器(2A)、单元A子系统充放电控制模块(3A)、单元A子系统显示及操控面板(4A)、单元A子系统整流电路模块(5A)、单元A子系统逆变电路模块(6A)、单元A子系统蓄电池组串(7A)、单元A子系统旁路A开关模块(8A)、单元A子系统远程通信接口(13A)、A多单元子系统源极并接端子(14A1)、A多单元子系统末极并接端子(14A2)、单元A子系统监控总线(16A)、单元A子系统蓄电池监控总线(17A)、单元B子系统控制器(1B)、单元B子系统蓄电池集中监控器(2B)、单 ...
【技术特征摘要】
1.一种分布式多子系统组成的N+M冗余UPS系统,包括:单元A子系统控制器(1A)、单元A子系统蓄电池集中监控器(2A)、单元A子系统充放电控制模块(3A)、单元A子系统显示及操控面板(4A)、单元A子系统整流电路模块(5A)、单元A子系统逆变电路模块(6A)、单元A子系统蓄电池组串(7A)、单元A子系统旁路A开关模块(8A)、单元A子系统远程通信接口(13A)、A多单元子系统源极并接端子(14A1)、A多单元子系统末极并接端子(14A2)、单元A子系统监控总线(16A)、单元A子系统蓄电池监控总线(17A)、单元B子系统控制器(1B)、单元B子系统蓄电池集中监控器(2B)、单元B子系统充放电控制模块(3B)、单元B子系统显示及操控面板(4B)、单元B子系统整流电路模块(5B)、单元B子系统逆变电路模块(6B)、单元B子系统蓄电池组串(7B)、单元B子系统旁路B开关模块(8B)、单元B子系统远程通信接口(13B)、B多单元子系统源极并接端子(14B1)、B多单元子系统末极并接端子(14B2)、单元B子系统监控总线(16B)、单元B子系统蓄电池监控总线(17B)、多电源输入控制开关模块(9)、用户负载(10)、主输入电源(11)、副输入电源(12)、多系统通信连接线(15);由单元A子系统控制器(1A)、单元A子系统蓄电池集中监控器(2A)、单元A子系统充放电控制模块(3A)、单元A子系统显示及操控面板(4A)、单元A子系统整流电路模块(5A)、单元A子系统逆变电路模块(6A)、单元A子系统蓄电池组串(7A)、单元A子系统旁路A开关模块(8A)、单元A子系统远程通信接口(13A)、A多单元子系统源极并接端子(14A1)、A多单元子系统末极并接端子(14A2)、单元A子系统监控总线(16A)、单元A子系统蓄电池监控总线(17A)组成独立运行的不间断电源单元A子系统;由单元B子系统控制器(1B)、单元B子系统蓄电池集中监控器(2B)、单元B子系统充放电控制模块(3B)、单元B子系统显示及操控面板(4B)、单元B子系统整流电路模块(5B)、单元B子系统逆变电路模块(6B)、单元B子系统蓄电池组串(7B)、单元B子系统旁路B开关模块(8B)、单元B子系统远程通信接口(13B)、B多单元子系统源极并接端子(14B1)、B多单元子系统末极并接端子(14B2)、单元B子系统监控总线(16B)、单元B子系统蓄电池监控总线(17B)组成独立运行的不间断电源单元B子系统;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接A多单元子系统源极并接端子(14A1)、单元A子系统整流电路模块(5A)、单元A子系统逆变电路模块(6A)、A多单元子系统末极并接端子(14A2)及用户负载(10),构成主输入电源(11)或副输入电源(12)为用户负载(10)供电的A电力路径;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接A多单元子系统源极并接端子(14A1)、单元A子系统充放电控制模块(3A)及单元A子系统蓄电池组串(7A),构成主输入电源(11)或副输入电源(12)为单元A子系统蓄电池组串(7A)供电的充电A电力路径;单元A子系统蓄电池组串(7A)顺次连接单元A子系统充放电控制模块(3A)、单元A子系统逆变电路模块(6A)、A多单元子系统末极并接端子(14A2)及用户负载(10),构成单元A子系统蓄电池组串(7A)为用户负载(10)应急供电的蓄电池A电力供电路径;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接A多单元子系统源极并接端子(14A1)、单元A子系统旁路A开关模块(8A)、A多单元子系统末极并接端子(14A2)及用户负载(10),构成主输入电源(11)或副输入电源(12)为用户负载(10)旁路A供电的电力路径;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接B多单元子系统源极并接端子(14B1)、单元B子系统整流电路模块(5B)、单元B子系统逆变电路模块(6B)、B多单元子系统末极并接端子(14B2)及用户负载(10),构成主输入电源(11)或副输入电源(12)为用户负载(10)供电的B电力路径;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接B多单元子系统源极并接端子(14B1)、单元B子系统充放电控制模块(3B)及单元B子系统蓄电池组串(7B),构成主输入电源(11)或副输入电源(12)为单元B子系统蓄电池组串(7B)供电的充电B电力路径;单元B子系统蓄电池组串(7B)顺次连接单元B子系统充放电控制模块(3B)、单元B子系统逆变电路模块(6B)、B多单元子系统末极并接端子(14B2)及用户负载(10),构成单元B子系统蓄电池组串(7B)为用户负载(10)应急供电的蓄电池B电力供电路径;主输入电源(11)和副输入电源(12)分别通过多电源输入控制开关模块(9)顺次连接B多单元子系统源极并接端子(14B1)、单元B子系统旁路B开关模块(8B)、B多单元子系统末极并接端子(14B2)及用户负载(10),构成主输入电源(11)或副输入电源(12)...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。