一种基于MEMS工艺的柔性可穿戴温差能量收集器件制造技术

技术编号:15683706 阅读:236 留言:0更新日期:2017-06-23 15:23
本实用新型专利技术公开了一种基于MEMS工艺的柔性可穿戴温差能量收集器件。该器件结构从下而上依次是下柔性材料基底层、两种不同材料的相关热电臂、热电臂导电连接线、上下柔性材料PDMS(聚二甲基硅氧烷)连接柱、上柔性静电纺丝层和石墨烯导热层。采用PDMS 作为柔性材料连接层,因为该材料具有低热导率且具有弹性,相对其它材料能减少因空气对流和热传导带来的热量损失,从而提高温差能量利用率;该柔性温差器件不仅制造工艺简单,有利于大批量生产,而且质量轻、抗冲击性能好,能很好的贴合曲面热源来嵌入到人体皮肤表面或者衣服里面。上柔性静电纺丝层采用PVDF材料及石墨烯导热层组合成,具有高热导率且高度柔性,能增加因空气对流和热传导带来的热量损失。本实用新型专利技术利用人体热源,用以解决用于人体的相关智能传感器长期供电。

【技术实现步骤摘要】
一种基于MEMS工艺的柔性可穿戴温差能量收集器件
本技术涉及基于MEMS工艺的柔性可穿戴的、智能的人体热量发电器件,尤其涉及一种基于MEMS工艺的柔性可穿戴温差能量收集器件。
技术介绍
温差发电技术是一种绿色环保的发电方式,它可将太阳能、地热能、工业余热、人体热能等各种形式的热能充分利用起来,转化成能够储存、直接利用的电能。温差发电也是一种新型的发电方式,它利用塞贝克效应将热能转换成电能。当两种不同材料的半导体连接成一个闭合回路,并把它们的接点分别放置在温度区域,从而在器件的两端形成一个温差,也就会产生一个电压,这样整个系统构成一个温差发电器件可将自然界中的热能转化为电能。由于温差发电器件具有以下的优点:无移动部件、无污染、结构简单、无噪音、轻便、易于微型化、即使小温差存在的条件就可将热能转换成电能,使得温差发电技术具有广泛的应用前景。目前大部分温差发电器件为刚性陶瓷基底,器件重且极不方便作为人体热能收集。另外该类型基底材料,不仅增加了热量损失,也增加了结构重量。因而现有技术还有待改进和提高。
技术实现思路
鉴于上述现有技术的不足之处,本技术的目的在于提供一种基于MEMS的温差发电器件具有加工工艺简单、成本低、高柔性、轻便等优点,这种有柔性自支撑性能的温差发电结构在可穿戴的、智能的人体热量利用方面具有非常大的应用价值。为了达到上述目的,本技术采取了以下技术方案:一种基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,包括从下而上依次的下柔性材料基底层、两种不同材料的相关热电臂、热电臂导电连接线、上下柔性材料PDMS连接柱、上柔性静电纺丝层和石墨烯导热层;其中,所述热电臂导电连接线与热电臂连接。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,所述两种不同材料的相关热电臂分别为N型热电臂和P型热电臂。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,所述热电臂导电连接线的两端分别于N型热电臂及P型热电臂相连,且交替生长在柔性材料基底上表面与柔性静电纺丝层下表面。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,还包括:DC/DC稳压模块和负载;所述DC/DC稳压模块的一端通过导线连接负载;另一端连接热电臂导电连接线。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,还包括:DC/DC稳压模块和传感器;所述DC/DC稳压模块的一端通过导线连接传感器;另一端连接热电臂导电连接线。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,所述的柔性材料基底层的上表面等距分布有N×N个圆柱,每个圆柱内均填满有相间排布的P型热电臂、N型热电臂及上下柔性材料PDMS连接柱,每行排列均相同;其中N为偶数。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,N=4。所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其中,所述的柔性材料基底层的上表面等距分布有N×N个梯形柱,每个梯形柱内均填满有相间排布的P型热电臂、N型热电臂及上下柔性材料PDMS连接柱,每行排列均相同;其中N为偶数。有益效果:本技术采用上述技术方案与现有技术相比,可达到下列效果:1.为使温差能量收集器件能自适应人体热源环境的能量收集,本技术提出了基于柔性材料的能量收集器件,可把该器件粘贴到人体皮肤表面或者嵌入到衣物里面,实现人体耗散热能到电能的有效收集,该收集的能量可用于人体可穿戴传感器件的持续供电;2.常见的温差能量收集器件其电量输出端正负距离相对较远,极不易使用在微型人体健康类传感器件。本技术设计出电量输出的接线端子相对较近的温差能量收集器件,可方便与MEMS人体探测传感器连接;3.常见的热电能量收集器件热电转换效率低,本技术设计出两种结构的温差能量收集器件,该器件充分利用热流在有限结构空间热传递效能,能够极大提高热电转换效率;4.本技术充分考虑了材料吸热放热特性关系,利用静电纺丝制备出上柔性基底,然后在其上表镀上石墨烯层用以增加吸附人体热源,该方法可有效增大热电转换效率。附图说明图1为本技术的一种MEMS柔性温差能量收集器件原理结构的示意图;图2为本技术的一种MEMS柔性温差能量收集器件下版面3D结构示意图;图3为本技术的一种MEMS柔性温差能量收集器件3D结构示意图;图4为本技术的另一种MEMS柔性温差能量收集器件原理结构示意图;图5为本技术的另一种MEMS柔性温差能量收集器件下版面3D结构示意图;图6为本技术的另一种MEMS柔性温差能量收集器件3D结构示意图。具体实施方式本技术提供的基于MEMS工艺的柔性可穿戴温差能量收集器件。为使本技术的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本技术进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本技术,并不用于限定本技术。本技术的工作原理:在柔性衬底上通过在热端和冷端之间合理选用和布置N型与P型热电臂,利用塞贝克(Seebeck)效应在热电臂两端产生电势差。由于单组热电臂发电量过低,我们采用电路串联的方式将一组热电臂设计并布置形成单排或多排阵列的模块,从而有效提高器件输出电势差,其产生的电能经DC/DC稳压模块直接输出到可用于人体可穿戴传感器件并达到持续供电的效果。实施例一请一并参阅图1至图3,本申请实施例一提供的MEMS柔性温差能量收集器,包括:第一柔性材料基底层1、第一热电臂导电连接线2、第一N型热电臂4、第一P型热电臂3、第一PDMS上下柔性材料连接柱5、第一DC/DC稳压模块6、第一导线8、第一负载或第一传感器7、第一气隙9、第一柔性静电纺丝层10和第一石墨烯层11。具体的,采用第一柔性材料基底层1,因为其具有低热导率且具有弹性,相对其它材料能减少因空气对流和热传导带来的热量损失,从而提高温差能量利用率;该柔性温差器件不仅制造工艺简单,有利于大批量生产,而且质量轻、抗冲击性能好,能很好的贴合曲面热源来嵌入到人体皮肤表面或者衣服里面。第一N型热电臂4及第一P型热电臂3采用两种不同材料制作而成,他们的目的是通过温度的变化产生电流。第一热电臂导电连接线2的作用是把不同热电臂之间串联起来,它两端分别于第一N型热电臂4及第一P型热电臂3相连,且交替生长在第一柔性材料基底1上表面与第一柔性静电纺丝层10下表面。其引出端子与外部连接,形成热电回路。第一负载或第一传感器7的作用是将产生的电流保存起来或者在传感器上消耗掉。第一气隙9的作用是提高热电单元的温度场梯度,从而有效的提升热电转化效率。第一柔性静电纺丝层10采用PVDF静电方式制备出,静电纺丝的特点是容易产生出有空隙的薄膜,从而有效的提高人体温度梯度对热电模块内部的热传递。第一石墨烯层7使用主要目的是提高柔性表面层与人体皮肤或者衣服的散热性。第一所述的柔性材料基底1上表面等距分布有N×N偶数个圆柱(图2中为4×4),每个圆柱内均填满有相间排布的第一P型热电臂3,第一N型热电臂4及第一PDMS柔性材料,每行排列均相同。当热流经由第一柔性静电纺丝层10及第一石墨烯层11时,不同热电臂之间即可产生瞬态电势,即可利用热源温度和环境温度的梯度进行发电。实施例二请一并参阅图4至图6作为另一种结构的实施例,本申本文档来自技高网...
一种基于MEMS工艺的柔性可穿戴温差能量收集器件

【技术保护点】
一种基于MEMS工艺的柔性可穿戴温差能量收集器件,其特征在于,包括从下而上依次的下柔性材料基底层、两种不同材料的相关热电臂、热电臂导电连接线、上下柔性材料PDMS连接柱、上柔性静电纺丝层和石墨烯导热层;其中,所述热电臂导电连接线与热电臂连接。

【技术特征摘要】
1.一种基于MEMS工艺的柔性可穿戴温差能量收集器件,其特征在于,包括从下而上依次的下柔性材料基底层、两种不同材料的相关热电臂、热电臂导电连接线、上下柔性材料PDMS连接柱、上柔性静电纺丝层和石墨烯导热层;其中,所述热电臂导电连接线与热电臂连接。2.根据权利要求1所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其特征在于,所述两种不同材料的相关热电臂分别为N型热电臂和P型热电臂。3.根据权利要求1所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其特征在于,所述热电臂导电连接线的两端分别于N型热电臂及P型热电臂相连,且交替生长在柔性材料基底上表面与柔性静电纺丝层下表面。4.根据权利要求1所述的基于MEMS工艺的柔性可穿戴温差能量收集器件,其特征在于,还包括:DC/DC稳压模块和负载;所述DC/DC稳压模块的一端通过导线连接负载;另一端连接热电臂导电连接线。5...

【专利技术属性】
技术研发人员:郑海峰朱建雄
申请(专利权)人:广州首诺科技有限公司
类型:新型
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1