一种基于三重损失的改进的神经网络行人再识别方法技术

技术编号:15501812 阅读:132 留言:0更新日期:2017-06-03 23:00
本发明专利技术公开了一种基于三重损失的改进的神经网络行人再识别方法,包括以下步骤:构建样本数据库,并基于样本数据库建立正负样本库,随机选取两个正样本和一个负样本组成三元组;搭建基于三重损失的神经网络并训练,神经网络由三个并行的卷积神经网络连接一个三重损失层构成;将待测图片以及扩充后的样本数据库中的每一张样本图片依次作为一组输入投入到训练好的神经网络中,神经网络另一输入为零或无输入;再利用欧式距离计算出神经网络输出的两张输入图片的特征向量的距离,并查询出升序排列出前20位的欧式距离,再进行简单的人工筛选即可得到最终识别结果。本发明专利技术的有益效果是:本发明专利技术的识别方法能够适用于有较大变化的图片场景,能够保证鲁棒性,具有较高的识别准确率。

Improved neural network pedestrian re identification method based on three heavy loss

The invention discloses a recognition method of neural network to improve the pedestrian three weight loss based, which comprises the following steps: constructing the sample database, and based on the positive and negative sample sample database, randomly selected two positive samples and three negative samples consisting of a tuple; Da Jianji in the three heavy loss of neural networks and neural training. The network consists of three parallel convolutional neural network is connected with a three weight loss layer; to each sample image measuring image and the expansion of the sample in the database are used as inputs to a neural network trained neural network, another input is zero or no input can be calculated; a feature vector of two input image output of the neural network distance using Euclidean distance, and query the ascending order out of the top 20 of the Euclidean distance, and then artificial screening can be simple Final recognition results are obtained. The invention has the advantages that the recognition method of the invention can be applied to a picture scene with large variation, and can guarantee robustness and have higher recognition accuracy.

【技术实现步骤摘要】
一种基于三重损失的改进的神经网络行人再识别方法
本专利技术涉及图像识别
,特别涉及一种基于三重损失的改进的神经网络行人再识别方法。
技术介绍
随着科技的进步,计算机等智能设备在人们的日常生活中应用越来越广泛,计算机在处理重复的,数据密集的任务时,比人类更有效,更准确。自然地人们希望计算机能够像人类一样处理一些更智能的问题。在计算机新的应用领域中计算机视觉是一个重要的部分,由计算机代替或辅助人类完成对目标的检测与跟踪是计算机视觉最核心也是最广泛的应用,从日常生活中用到的指纹或人脸解锁,到汽车的自动驾驶,机器人控制等都与计算机视觉技术息息相关。人类是社会生活的主体,对行人的识别理所当然的也是计算机视觉应用中最重要的任务之一。但由于人体姿态多变,外形不固定且随着衣着的变化表现的颜色特征也不同,目前仍然是一个极富挑战的课题,但因其广泛的应用前景,虽然行人检测任务面临着众多困难,仍然吸引了大量研究者的目光。目前的行人在识别方法多是使用softmax回归来使卷积神经网络收敛,生成模型进行人分类方法,但当图片场景有较大变化时不能够保证鲁棒性,无法适用于多个场景(即背景固定的图,可移植性不好)本文档来自技高网...

【技术保护点】
一种基于三重损失的改进的神经网络行人再识别方法,其特征在于,所述识别方法包括以下步骤:步骤S1:构建样本数据库,并对样本数据库中的每一张样本图片通过平移、旋转和镜像方式进行数量扩充,由原来的一张样本图片扩充到八张样本图片组成一个小数据集;步骤S2:建立正负样本库;随机选取属于同一小数据集的两张样本图片左右拼接作为正样本,随机选取属于不同小数据集的两张样本图片左右拼接作为负样本;随机选取两个正样本和一个负样本组成三元组,或随机选取两个负样本和一个正样本组成三元组;步骤S3:制作正负样本库的样本标签,将正样本标记为1,负样本标记为0,通过caffe框架提供的工具将样本格式转换为lmdb格式并生成对...

【技术特征摘要】
1.一种基于三重损失的改进的神经网络行人再识别方法,其特征在于,所述识别方法包括以下步骤:步骤S1:构建样本数据库,并对样本数据库中的每一张样本图片通过平移、旋转和镜像方式进行数量扩充,由原来的一张样本图片扩充到八张样本图片组成一个小数据集;步骤S2:建立正负样本库;随机选取属于同一小数据集的两张样本图片左右拼接作为正样本,随机选取属于不同小数据集的两张样本图片左右拼接作为负样本;随机选取两个正样本和一个负样本组成三元组,或随机选取两个负样本和一个正样本组成三元组;步骤S3:制作正负样本库的样本标签,将正样本标记为1,负样本标记为0,通过caffe框架提供的工具将样本格式转换为lmdb格式并生成对应的均值文件;步骤S4:搭建基于三重损失的神经网络,所述神经网络由三个并行的卷积神经网络连接一个三重损失层构成;所述神经网络设有三个输入,包括两个相同样本输入和一个不同样本输入;所述三重损失层采用三重损失函数;步骤S5:所述步骤S2中构成的同一个三元组的三个元素作为神经网络的三个输入,对神经网络进行训练;步骤S6:将待测图片以及扩充后的样本数据库中的每一张样本图片依次作为一组输入投入到训练好的神经网络中,神经网络另一输入为零或无输入;再利用欧式距离计算出神经网络输出的两张输入图片的特征向量的距离,并查询出升序排列出至少前20位的欧式距离,排序越靠前的欧式距离对应的样本图片与待测图片的相似度越高。2.根据权利要求1所述的基于三...

【专利技术属性】
技术研发人员:舒泓新蔡晓东陈昀
申请(专利权)人:中通服公众信息产业股份有限公司
类型:发明
国别省市:新疆,65

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1