处理赤泥的系统技术方案

技术编号:14499730 阅读:76 留言:0更新日期:2017-01-30 03:42
本实用新型专利技术公开了处理赤泥的系统,包括:烘干装置、磨矿装置、流化床、压块装置和熔分炉,其中,磨矿装置具有干燥赤泥入口和赤泥超细粉出口,干燥赤泥入口与烘干装置的干燥赤泥出口相连;流化床具有还原性气体入口、赤泥超细粉入口、脱碱赤泥出口和高碱烟尘出口,赤泥超细粉入口与赤泥超细粉出口相连;压块装置具有脱碱赤泥入口、还原剂入口、添加剂入口和赤泥团块出口,脱碱赤泥入口与脱碱赤泥出口相连;以及熔分炉具有赤泥团块入口、铁水出口和尾渣出口,赤泥团块入口与赤泥团块出口相连。由此采用该系统能有效地脱除赤泥中的碱金属,提高了后续赤泥铁的还原性,解决了赤泥脱碱率低,铁还原效果差,铁难以回收的技术难题。

【技术实现步骤摘要】

本技术属于冶金和能源
,具体涉及一种处理赤泥的系统
技术介绍
赤泥是氧化铝工业生产过程中产生的最主要的固体废渣,目前,国内赤泥每年排放量超过3000万t,除少部分应用于水泥生产、制砖等用途外,大多湿法露天筑坝堆存,现今赤泥累积堆存已超过3.5亿吨。在水泥建材领域,2015年我国水泥消耗量国约为22亿吨,市场十分巨大,但目前制约赤泥在水泥中应用的主要限制因素是赤泥中碱含量过高。现有的赤泥脱碱方法主要有石灰法、常压悬浮碳化法、水洗法、酸洗法。石灰水热法脱碱是在高压或低压下加入石灰,使之与赤泥发生晶格取代反应,利用Ca2+取代赤泥中的Na+,Na+随溶液溶出,从而达到脱碱目的。此种方法脱碱效果显著,但脱碱过程存在石灰用量大,成本高等问题。酸浸出法是直接用硫酸、盐酸等强酸浸取赤泥进行脱碱,此方法存在操作环境差,废液量大且易造成二次污染等问题。脱碱成本高导致企业和客户利用赤泥的意愿较低,单纯脱碱或回收碱并不能经济有效的利用赤泥,从而限制了赤泥在水泥方面的应用。从成分来看,赤泥中酸性氧化物Al2O3、SiO2含量特别高,赤泥中Al2O3、SiO2含量特别高,在还原过程中需要添加大量的石灰石作为碱性熔剂。不加入石灰石时或加入量较少时,球团不能得到充分的还原,金属化率很低,不利于后续渣铁分离。当加入较多的石灰石后,石灰石中CaO在高温下则与FeO、SiO2、Al2O3形成钙铁橄榄石等低熔点化合物,导致球团软熔与耐火材料粘接严重,因此得到高金属化率的金属化球团比较难,现有的回转窑采用赤泥粉料烧结的方法,脱碱率虽能达到60%以上,但金属化率仅有50%-70%,铁回收率30%,设备易结圈,生产不顺。因此,赤泥的综合治理及其金属资源的有效回收成为人们日益关注的焦点。赤泥的处理主要还是外排前采用强磁选,提取部分铁精矿,尾矿直接堆存。
技术实现思路
本技术旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本技术的一个目的在于提出一种具有赤泥脱碱率高、铁还原效果好且易回收的处理赤泥的系统。根据本技术的一个方面,本技术还提出一种处理赤泥的系统,该系统包括:烘干装置,所述烘干装置具有含水赤泥入口和干燥赤泥出口;磨矿装置,所述磨矿装置具有干燥赤泥入口和赤泥超细粉出口,所述干燥赤泥入口与所述干燥赤泥出口相连;流化床,所述流化床具有还原性气体入口、赤泥超细粉入口、脱碱赤泥出口和高碱烟尘出口,所述赤泥超细粉入口与所述赤泥超细粉出口相连;压块装置,所述压块装置具有脱碱赤泥入口、还原剂入口、添加剂入口和赤泥团块出口,所述脱碱赤泥入口与所述脱碱赤泥出口相连;以及熔分炉,所述熔分炉具有赤泥团块入口、铁水出口和尾渣出口,所述赤泥团块入口与所述赤泥团块出口相连。由此采用该系统利用流化床对超细赤泥细粉进行脱碱处理,不仅可以有效脱除赤泥中的碱金属元素,减少赤泥后续提铁过程中碱金属对炉衬的侵蚀,也可得到低碱含量的尾矿。流化床在脱碱的同时还可以对赤泥中的铁进行预还原,有利于提高后期铁还原效率,便于得到高金属化率的金属化球团。更进一步地,利用压块装置将预还原脱碱处理的金属与还原煤压块,并在熔分炉内将团块进行深还原,有利于将还原的铁颗粒在高温下熔化聚集成铁水,实现渣、铁分离,得到回收率和金属化率更高的产品。不仅如此,本技术还可以通过高碱烟气出口回收高碱含量的烟尘,进而减少了环境污染,实现了资源有效地回收利用,因而具有显著的经济效益和社会效益。另外,根据本技术上述实施例的处理赤泥的系统还可以具有如下附加的技术特征:在本技术中,上述实施例的处理赤泥的系统进一步包括:旋风分离器,所述旋风分离器与所述高碱烟尘出口相连。由此利用所述旋风分离器与所述高碱烟尘出口相连将流化床内还原气体经挥发后进入烟气出口,通过除尘分离得到高碱烟尘,实现资源回收,减少环境污染。在本技术中,所述熔分炉为燃气熔分炉。由此有利于得到铁水和尾渣,进而实现铁和尾渣的分离,得到回收率和金属化率更高的产品。附图说明图1是根据本技术一个实施例的处理赤泥的系统的结构示意图。图2是根据本技术一个实施例的处理赤泥的方法的流程图。图3是根据本技术另一个实施例的处理赤泥的方法的流程图。具体实施方式下面详细描述本技术的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本技术,而不能理解为对本技术的限制。根据本技术的一个方面,本技术提出一种用于处理赤泥的系统。下面参考图1详细描述本技术具体实施例的处理赤泥的系统。根据本技术的具体实施例地处理赤泥的系统包括:烘干装置10,烘干装置具有含水赤泥入口11和干燥赤泥出口12;磨矿装置20,磨矿装置具有干燥赤泥入口21和赤泥超细粉出口22,干燥赤泥入口21与所述干燥赤泥出口相连12;流化床30,流化床具有还原性气体入口31、赤泥超细粉入口32、脱碱赤泥出口33和高碱烟尘出口34,赤泥超细粉入口32与赤泥超细粉出口22相连;压块装置40,压块装置具有脱碱赤泥入口41、还原剂入口42、添加剂入口43和赤泥团块出口44,脱碱赤泥入口41与脱碱赤泥出口33相连;以及熔分炉50,熔分炉具有赤泥团块入口51、铁水出口52和尾渣出口53,赤泥团块入口51与赤泥团块出口44相连。根据本技术的具体实施例,利用上述实施例的处理赤泥的系统对含水赤泥进行处理,具体可以按照下列步骤进行:首先,通过烘干装置10将含水赤泥进行烘干处理,以便得到干燥赤泥。其次通过磨矿装置20将干燥赤泥进行细磨处理,得到赤泥超细粉。进一步地,通过流化床30将赤泥超细粉在还原气氛下进行还原脱碱处理,得到脱碱赤泥,而赤泥细粉中的碱在流化床内还原后挥发进入高碱烟气出口34,通过除尘分离得到高碱烟尘。通过压块装置40将脱碱赤泥与还原剂进行混合均匀压块,得到赤泥团块,以及将赤泥团块在熔分炉50内进行熔分处理,得到铁水和尾渣。传统的回收赤泥中金属的装置以回转窑、转底炉、隧道窑等为主,这些设备不能完全脱除赤泥中的碱,生产能耗高,产品金属化率低等,造成生产成本高、生产不顺。本技术采用流化床300对超细赤泥细粉进行脱碱处理,不仅可以有效脱除赤泥中的碱金属元素,减少赤泥后续提铁过程中碱金属对炉衬的侵蚀,也可得到低碱含量的尾矿。流化床30在脱碱的同时还可以对赤泥中的铁进行预还原,有利于提高后期铁还原效率,便于得到高金属化率的金属化球团。更进一步地,利用压块装置40将预还原脱碱处理的金属与还原煤压块,并在熔分炉50内将团块进行深还原,有利于将还原的铁颗粒在高温下熔化聚集成铁水,实现渣、铁分离,得到回收率和金属化率更高的产品。不仅如此,本技术还可以通过高碱烟气出口34回收高碱含量的烟尘,进而减少了环境污染,实现了资源有效地回收利用,因而具有显著的经济效益和社会效益。根据本技术的具体实施例中的处理赤泥的系统,进一步包括:旋风分离器60,旋风分离器60与高碱烟尘出口34相连。由此利用旋风分离器与高碱烟尘出口相连将流化床内还原气体经挥发后进入烟气出口,通过除尘分离得到高碱烟尘,实现资源回收,减少环境污染。根据本技术的具体实施例中的处理本文档来自技高网
...
处理赤泥的系统

【技术保护点】
一种处理赤泥的系统,其特征在于,包括:烘干装置,所述烘干装置具有含水赤泥入口和干燥赤泥出口;磨矿装置,所述磨矿装置具有干燥赤泥入口和赤泥超细粉出口,所述干燥赤泥入口与所述干燥赤泥出口相连;流化床,所述流化床具有还原性气体入口、赤泥超细粉入口、脱碱赤泥出口和高碱烟尘出口,所述赤泥超细粉入口与所述赤泥超细粉出口相连;压块装置,所述压块装置具有脱碱赤泥入口、还原剂入口、添加剂入口和赤泥团块出口,所述脱碱赤泥入口与所述脱碱赤泥出口相连;以及熔分炉,所述熔分炉具有赤泥团块入口、铁水出口和尾渣出口,所述赤泥团块入口与所述赤泥团块出口相连。

【技术特征摘要】
1.一种处理赤泥的系统,其特征在于,包括:烘干装置,所述烘干装置具有含水赤泥入口和干燥赤泥出口;磨矿装置,所述磨矿装置具有干燥赤泥入口和赤泥超细粉出口,所述干燥赤泥入口与所述干燥赤泥出口相连;流化床,所述流化床具有还原性气体入口、赤泥超细粉入口、脱碱赤泥出口和高碱烟尘出口,所述赤泥超细粉入口与所述赤泥超细粉出口相连;压块装置,所述压块装置具有脱碱赤泥入口、还原...

【专利技术属性】
技术研发人员:王敏曹志成薛逊吴佩佩吴道洪
申请(专利权)人:江苏省冶金设计院有限公司
类型:新型
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1