高稳定输水管道双通压力监测系统技术方案

技术编号:14293493 阅读:88 留言:0更新日期:2016-12-25 23:45
本实用新型专利技术公开了一种高稳定输水管道双通压力监测系统,高稳定输水管道双通压力监测系统,包括设置在供水管路上的蓄能器,设置在蓄能器上的远程监测结构以及与该远程监测结构通过无线网络相连接的中心查控结构;远程监测结构由监控控制器、电源、压力传感器,以及信号收发器组成;中心查控结构由中心控制器、显控触摸屏,以及信号收发器组成。本实用新型专利技术提供了一种高稳定输水管道双通压力监测系统,能够更好的对输水管道中的水压进行调节与监控,能在事故发生前便提前预知与预防,大大降低了事故的发生率。

【技术实现步骤摘要】

本技术属于输水管道监控领域,特别涉及一种高稳定输水管道双通压力监测系统
技术介绍
在进行管道输水时,经常会发生水压不足导致断水或者水压过高导致管道破裂的情况,在发生了该情况后相关的工作人员再根据发生的地点去对供水管道进行维护与修理,给用水方带来了极大的不便,同时也使得工作人员的工作时间较为仓促,很容易疏忽导致其他事故的发生。所以为了提高输水管道的使用效果,必须要通过设置相关的装置与系统对管道内的水压进行控制与监测。
技术实现思路
本技术的目的在于克服了上述问题,提供了一种高稳定输水管道双通压力监测系统,能够更好的对输水管道中的水压进行调节与监控,能在事故发生前便提前预知与预防,大大降低了事故的发生率。为了实现上述目的,本技术采用以下技术方案实现:高稳定输水管道双通压力监测系统,包括设置在供水管路上的蓄能器,设置在蓄能器上的远程监测结构以及与该远程监测结构通过无线网络相连接的中心查控结构;远程监测结构由监控控制器,对监控控制器进行供电的电源,设置在蓄能器中对该蓄能器的内部压力进行测定并通过数模转换器与监控控制器相连接的压力传感器,以及设置在监控控制器上的信号收发器组成;中心查控结构由中心控制器,设置在中心控制器上的显控触摸屏,以及连接在中心控制器上的信号收发器组成;设置在监控控制器上的信号收发器通过无线网络与设置在中心控制器上的信号收发器相连接,在监控控制器与信号收发器之间以及中心控制器与信号收发器之间分别设置有一个双向信号处理电路,其中一个双向信号处理电路的输入端与监控控制器相连接、输出端与和该监控控制器相连 接的信号收发器相连接,另一个双向信号处理电路的输入端与中心控制器相连接、输出端与和该中心控制器相连接的信号收发器相连接,在电源与监控控制器之间还设置有电源处理电路,该电源处理电路的输入端与电源相连接、输出端与监控控制器相连接。作为优选,所述压力传感器为HM10高精度压力传感器。作为优选,所述中心控制器为智能手机或者PC电脑,监控控制器为PLC控制器。进一步的,所述双向信号处理电路由三极管VT1,三极管VT2,三极管VT3,三极管VT4,运算放大器P1,运算放大器P2,运算放大器P3,运算放大器P4,负极与运算放大器P1的正输入端相连接的电容C1,串接在运算放大器P1的负输入端与输出端之间的电阻R2,一端与电容C1的负极相连接、另一端与三极管VT1的集电极相连接的电阻R1,串接在三极管VT1的基极与集电极之间的电阻R7,串接在三极管VT1的基极与发射极之间的滑动变阻器RP1,一端与运算放大器P1的输出端相连接、另一端与运算放大器P2的正输入端相连接的电阻R3,一端与运算放大器P2的正输入端相连接、另一端与三极管VT1的发射极相连接的电阻R6,一端与运算放大器P1的输出端相连接、另一端经电阻R5后与三极管VT2的集电极相连接的电阻R4,串接在运算放大器P2的输出端与负输入端之间的电阻R8,负极与运算放大器P2的输出端相连接的电容C2,负极与运算放大器P3的正输入端相连接的电容C3,一端与电容C3的负极相连接、另一端与三极管VT4的集电极相连接的电阻R14,串接在三极管VT4的基极与集电极之间的电阻R15,串接在三极管VT4的发射极与基极之间的滑动变阻器RP2,串接在运算放大器P3的输出端与负输入端之间的电阻R12,一端与运算放大器P3的输出端相连接、另一端与运算放大器P4的正输入端相连接的电阻R11,一端与三极管VT3的基极相连接、另一端与运算放大器P3的输出端相连接的电阻R13,一端与运算放大器P3的输出端相连接、另一端经电阻R10后与三极管VT3的集电极相连接的电阻R9,串接在运算放大器P4的输出端与负输入端之间的电阻R16,以及负极与运算放大器P4的输出端相连接的电容C4组 成;其中,三极管VT1的发射极与三极管VT2的基极相连接,运算放大器P2的负输入端与三极管VT2的发射极相连接,三极管VT3的基极与三极管VT4的发射极相连接,三极管VT3的发射极与运算放大器P4的负输入端相连接,电阻R4和电阻R5的连接点与电阻R9和电阻R10的连接点相连接,三极管VT1和三极管VT4的基极相连接且接地,电容C1的正极与电容C2的正极组成该双向信号处理电路的输入端,电容C3的正极与电容C4的正极组成该双向信号处理电路的输出端。再进一步的,所述电源处理电路由三端稳压器IC1,三极管VT5,三极管VT6,三极管VT7,一端与三极管VT5的集电极相连接、另一端与三极管VT6的发射极相连接的电感L1,串接在三极管VT6的基极与发射极之间的电阻R17,正极与三极管VT5的集电极相连接、负极经电阻R19后与三极管VT5的基极相连接的电容C5,正极与三极管VT5的发射极相连接、负极与电容C5的负极相连接的电容C6,一端与三极管VT6的集电极相连接、另一端与三极管VT5的基极相连接的电阻R18,N极与三极管VT5的发射极相连接、P极与电容C6的负极相连接的二极管D2,P极与二极管D2的N极相连接、N极与三极管VT6的集电极相连接的二极管D1,一端与三极管VT6的集电极相连接、另一端与三极管VT7的基极相连接的电感L2,一端与三极管VT6的集电极相连接、另一端与三极管VT7的集电极相连接的电阻R20,正极与三极管VT7的基极相连接、负极与电容C6的负极相连接的电容C7,正极与三极管VT7的发射极相连接、负极与电容C7的负极相连接的电容C8,以及串接在三极管VT7的基极与发射极之间的电阻R21组成;其中,三极管VT5的发射极同时与三极管VT6的基极和三端稳压器IC1的IN管脚相连接,三极管VT5的基极与三端稳压器IC1的GND管脚相连接,三极管VT7的基极与三端稳压器IC1的OUT管脚相连接,三端稳压器的型号为7805,三极管VT5的集电极与电容C5的负极组成该电源处理电路的输入端,电容C8的正极与负极组成该电源处理电路的输出端。本技术较现有技术相比,具有以下优点及有益效果:(1)本技术能够通过设置在输水管道上的蓄能器自行的对输水管道中 的水压进行调节,并通过监测系统实现对输水管道的远程监测,从而更好的对输水管路中的水压情况进行了解,通过水压能够很好的对可能发生的事故进行判断,降低了事故的发生机率,提高了事故的处理效率。(2)本技术设置有双向信号处理电路,能够对控制器与信号收发器之间的信号进行滤波与放大处理,大大提高了数据收发的准确性,同时还能过提高远程监测结构与中心查控结构之间的设置距离,进一步提高了系统的使用效果。(3)本技术设置有电源处理电路,能够降低电源输出电流与电压的波动频率,避免了电源异常输出时对后续用电元器件产生的冲击,更好的维护了系统的运行平稳性,提高了系统使用的稳定性与设备的使用寿命。附图说明图1为本技术的结构框图。图2为本技术的双向信号处理电路的电路图。图3为本技术的电源处理电路的电路图。具体实施方式下面结合实施例对本技术作进一步地详细说明,但本技术的实施方式不限于此。实施例如图1所示,高稳定输水管道双通压力监测系统,包括设置在供水管路上的蓄能器,设置在蓄能器上的远程监测结构以及与该远程监测结构通过无线网络相连接的中心查控结构;远程监测结构由监本文档来自技高网...
高稳定输水管道双通压力监测系统

【技术保护点】
高稳定输水管道双通压力监测系统,其特征在于,包括设置在供水管路上的蓄能器,设置在蓄能器上的远程监测结构以及与该远程监测结构通过无线网络相连接的中心查控结构;远程监测结构由监控控制器,对监控控制器进行供电的电源,设置在蓄能器中对该蓄能器的内部压力进行测定并通过数模转换器与监控控制器相连接的压力传感器,以及设置在监控控制器上的信号收发器组成;中心查控结构由中心控制器,设置在中心控制器上的显控触摸屏,以及连接在中心控制器上的信号收发器组成;设置在监控控制器上的信号收发器通过无线网络与设置在中心控制器上的信号收发器相连接,在监控控制器与信号收发器之间以及中心控制器与信号收发器之间分别设置有一个双向信号处理电路,其中一个双向信号处理电路的输入端与监控控制器相连接、输出端与和该监控控制器相连接的信号收发器相连接,另一个双向信号处理电路的输入端与中心控制器相连接、输出端与和该中心控制器相连接的信号收发器相连接,在电源与监控控制器之间还设置有电源处理电路,该电源处理电路的输入端与电源相连接、输出端与监控控制器相连接。

【技术特征摘要】
1.高稳定输水管道双通压力监测系统,其特征在于,包括设置在供水管路上的蓄能器,设置在蓄能器上的远程监测结构以及与该远程监测结构通过无线网络相连接的中心查控结构;远程监测结构由监控控制器,对监控控制器进行供电的电源,设置在蓄能器中对该蓄能器的内部压力进行测定并通过数模转换器与监控控制器相连接的压力传感器,以及设置在监控控制器上的信号收发器组成;中心查控结构由中心控制器,设置在中心控制器上的显控触摸屏,以及连接在中心控制器上的信号收发器组成;设置在监控控制器上的信号收发器通过无线网络与设置在中心控制器上的信号收发器相连接,在监控控制器与信号收发器之间以及中心控制器与信号收发器之间分别设置有一个双向信号处理电路,其中一个双向信号处理电路的输入端与监控控制器相连接、输出端与和该监控控制器相连接的信号收发器相连接,另一个双向信号处理电路的输入端与中心控制器相连接、输出端与和该中心控制器相连接的信号收发器相连接,在电源与监控控制器之间还设置有电源处理电路,该电源处理电路的输入端与电源相连接、输出端与监控控制器相连接。2.根据权利要求1所述的高稳定输水管道双通压力监测系统,其特征在于,所述压力传感器为HM10高精度压力传感器。3.根据权利要求2所述的高稳定输水管道双通压力监测系统,其特征在于,所述中心控制器为智能手机或者PC电脑,监控控制器为PLC控制器。4.根据权利要求3所述的高稳定输水管道双通压力监测系统,其特征在于,所述双向信号处理电路由三极管VT1,三极管VT2,三极管VT3,三极管VT4,运算放大器P1,运算放大器P2,运算放大器P3,运算放大器P4,负极与运算放大器P1的正输入端相连接的电容C1,串接在运算放大器P1的负输入端与输出端之间的电阻R2,一端与电容C1的负极相连接、另一端与三极管VT1的集电极相连接的电阻R1,串接在三极管VT1的基极与集电极之间的电阻R7,串接在三极管VT1的基极与发射极之间的滑动变阻器RP1,一端与运算放大器P1的输出端相连接、另一端与运算放大器P2的正输入端相连接的电阻R3,一端与运算放大器P2的正输入端相连接、另一端与三极管VT1的发射极相连接的电 阻R6,一端与运算放大器P1的输出端相连接、另一端经电阻R5后与三极管VT2的集电极相连接的电阻R4,串接在运算放大器P2的输出端与负输入端之间的电阻R8,负极与运算放大器P2的输出端相连接的电容C2,负极与运算放大器P3的正输入端相连接的电容C3,一端与电容C3的负极相连接、另一端与三极管VT4的集电极相连接的电阻R14,串接在三极管VT4的基极与集电极之间的电阻R15,串接在三极管VT4的发射极与基极之间的滑动变阻器RP2...

【专利技术属性】
技术研发人员:陈莉
申请(专利权)人:成都捷冠科技有限公司
类型:新型
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1