用全频段变结构工况自适应滤波、和塑形的油液监控设备制造技术

技术编号:14225031 阅读:81 留言:0更新日期:2016-12-20 00:29
本实用新型专利技术涉及一种用全频段变结构工况自适应滤波、和塑形的油液监控设备,其设置在液压管路上,其滤波器、分离吸附模块、旋转塑形模块、检测线圈、流量传感器、消磁模块依次设置在液压管路上;所述检测线圈、参考线圈相串联;ECU分别电性连接并控制滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块和流量传感器;所述滤波器采用全频段变结构工况自适应滤波器;所述分离吸附模块由依次连接的机械离心模块、磁化模块、磁吸附模块、起电模块以及电吸附模块组成。本实用新型专利技术采用非接触的测量方式,具有信号一致性好、可靠性高、检测信号强且误差小等诸多优点。

【技术实现步骤摘要】

本技术涉及一种油液在线监控设备,具体涉及一种用全频段变结构工况自适应滤波、和塑形的油液监控设备,属于液压设备

技术介绍
机器零件的失效形式中,磨损引起的失效占70%以上。金属磨损微粒中隐含着机械装备运行状态信息,能反映设备的磨损现状与趋势,同时也是诊断设备故障、进行预测维修、对设备进行改进设计的重要依据。因此,对油液中的金属磨损微粒进行在线监测已成为液压系统卡紧卡涩故障诊断和预判的重要手段。利用线圈电感变化可检测油液中铁磁质颗粒与抗磁质颗粒,同时可确定磨损颗粒的质量分析、尺寸分布、总数量,可方便实现非侵入在线监测。中国专利技术专利第201210167540.X号公开了一种基于电感量测量的在线油液颗粒传感器,当油液中的金属磨损颗粒流经测试线圈时,使得测试线圈电感量变大,高频测试电路振荡频率变小,振荡回路电流变大,金属磨损颗粒流过后,高频测试部分重新回到原来的稳幅振荡状态,进而获得颗粒数量、颗粒尺寸分布与颗粒产生速率,实现油中颗粒在线监测。然而,该监测方法存在以下几方面的不足:1.金属磨损微粒流经测试线圈时引起的磁场波动十分微弱,检测线圈的输出结果受微粒通过速度影响较大,管道中油液的压力和流量波动将严重影响电感法微粒检测的有效性和一致性。2.机械润滑油中的金属磨损磨粒按照其电磁特性可分为铁磁质微粒(如铁)和非铁磁质微粒(如铜、铝)。铁磁质微粒增强传感器线圈的等效电感,而非铁磁质微粒则削弱传感器线圈的等效电感。当两种微粒同时通过检测线圈时,该监测装置将失效。3.正常情况下金属磨损微粒的粒径较小,在5um左右,且主要为球磨粒,其纤度小于其他磨粒,传感器线圈对其检测能力相对较弱。如专利文献1只能处理10um左右的金属微粒,无法监测零部件的早期磨损。4.螺线管内的磁感应强度B沿其轴线方向为非均匀分布,这将导致严重的测量误差;同时同一型号的电感对铁质颗粒的检测能力要大于对铜质颗粒的检测能力,这同样会带来测量误差。因此,为解决上述技术问题,确有必要提供一种创新的用全频段变结构工况自适应滤波、和塑形的油液监控设备,以克服现有技术中的所述缺陷。
技术实现思路
为解决上述技术问题,本技术的目的在于提供一种采用非接触的测量方式、信号一致性好、可靠性高、检测信号强且误差小的用全频段变结构工况自适应滤波、和塑形的油液监控设备。为实现上述目的,本技术采取的技术方案为:用全频段变结构工况自适应滤波、和塑形的油液监控设备,其设置在液压管路上,其包括滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块、流量传感器以及ECU;其中,所述滤波器、分离吸附模块、旋转塑形模块、检测线圈、流量传感器、消磁模块依次设置在液压管路上;所述检测线圈、参考线圈相串联;所述ECU分别电性连接并控制滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块和流量传感器;所述滤波器包括输入管、外壳、输出管、波纹管以及S型弹性薄壁;其中,所述输入管连接于外壳的一端,其和一液压油进口对接;所述输出管连接于外壳的另一端,其和U型微粒分离模块对接;所述S型弹性薄壁沿外壳的径向安装于外壳内,其内形成膨胀腔和收缩腔;所述输入管、输出管和S型弹性薄壁共同形成一S型容腔滤波器;所述S型弹性薄壁和外壳之间形成圆柱形的共振容腔;所述S型弹性薄壁的轴向上均匀开有若干锥形变结构阻尼孔,锥形变结构阻尼孔连通共振容腔;所述锥形变结构阻尼孔由锥形弹性阻尼孔管和缝孔组成;所述波纹管呈螺旋状绕在共振容腔外,和共振容腔通过多个锥形插入管连通;所述波纹管各圈之间通过若干支管连通,支管上设有开关;所述波纹管和共振容腔组成插入式螺旋异构串联H型滤波器;所述分离吸附模块由依次连接的机械离心模块、磁化模块、磁吸附模块、起电模块以及电吸附模块组成。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述输入管和输出管的轴线不在同一轴线上;所述锥形变结构阻尼孔开口较宽处位于共振容腔内,其锥度角为10°;所述锥形变结构阻尼孔锥形弹性阻尼孔管的杨氏模量比弹性薄壁的杨氏模量要大,能随流体压力变化拉伸或压缩;缝孔的杨氏模量比锥形弹性阻尼孔管的杨氏模量要大,能随流体压力开启或关闭;所述锥形插入管开口较宽处位于波纹管内,其锥度角为10°。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述机械离心模块采用旋流离心模块;所述旋流离心模块包括旋流管壁、第一导流片、第二导流片、步进电机以及流量传感器;其中,所述第一导流片设有3片,该3片第一导流片沿管壁内圆周隔120°均匀分布,其安放角设为18°;所述第二导流片和第一导流片结构相同,其设置在第一导流片后,并和第一导流片错开60°连接在管壁内,其安放角设为36℃;所述第一导流片的长边与管壁相连,短边沿管壁的轴线延伸;其前缘挫成钝形,后缘加工成翼形,其高度为管壁直径的0.4倍,长度为管壁直径的1.8倍;所述步进电机连接并驱动第一导流片和第二导流片,以调节安放角;所述流量传感器设置在管壁内的中央。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述磁化模块包括铝质管道、若干绕组、铁质外壳以及法兰;其中,所述若干绕组分别绕在铝质管道外;所述铁质外壳包覆于铝质管道上;所述法兰焊接在铝质管道的两端。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述磁吸附模块采用同极相邻型吸附环,该同极相邻型吸附环包括铝质环形管道、正向螺线管、反向螺线管以及铁质导磁帽;所述正向螺线管和反向螺线管分别布置于铝质环形管道内,两者通有方向相反的电流,使得正向螺线管和反向螺线管相邻处产生同性磁极;所述铁质导磁帽布置于铝质环形管道的内壁上,其位于正向螺线管和反向螺线管相邻处、以及正向螺线管和反向螺线管轴线的中间点。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述磁吸附模块采用带电击锤的同极相邻型吸附环,该带电击锤的同极相邻型吸附环包括铝质环形管道、正向螺线管、反向螺线管、铁质导磁帽、隔板、电击锤以及电磁铁;所述正向螺线管和反向螺线管分别布置于铝质环形管道内,两者通有方向相反的电流,使得正向螺线管和反向螺线管相邻处产生同性磁极;所述铁质导磁帽布置于铝质环形管道的内壁上,其位于正向螺线管和反向螺线管相邻处、以及正向螺线管和反向螺线管轴线的中间点;所述隔板位于正向螺线管和反向螺线管之间;所述电击锤和电磁铁位于隔板之间;所述电磁铁连接并能推动电击锤,使电击锤敲击铝质环形管道内壁。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述起电模块包括若干电极以及一电极控制器;所述若干电极安装于液压管路上,其分别连接至电极控制器。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述电吸附模块包括铝质管道、阳极板、阴极板以及极板控制器;其中,所述阳极板、阴极板分别设置在铝质管道上,并呈相对设置;所述阳极板、阴极板分别电性连接至极板控制器上;所述极板控制器电性连接至ECU,并由ECU控制。本技术的用全频段变结构工况自适应滤波、和塑形的油液监控设备进一步设置为:所述旋转塑形模块包本文档来自技高网
...
用全频段变结构工况自适应滤波、和塑形的油液监控设备

【技术保护点】
用全频段变结构工况自适应滤波、和塑形的油液监控设备,其设置在液压管路上,其特征在于:包括滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块、流量传感器以及ECU;其中,所述滤波器、分离吸附模块、旋转塑形模块、检测线圈、流量传感器、消磁模块依次设置在液压管路上;所述检测线圈、参考线圈相串联;所述ECU分别电性连接并控制滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块和流量传感器;所述滤波器包括输入管、外壳、输出管、波纹管以及S型弹性薄壁;其中,所述输入管连接于外壳的一端,其和一液压油进口对接;所述输出管连接于外壳的另一端,其和U型微粒分离模块对接;所述S型弹性薄壁沿外壳的径向安装于外壳内,其内形成膨胀腔和收缩腔;所述输入管、输出管和S型弹性薄壁共同形成一S型容腔滤波器;所述S型弹性薄壁和外壳之间形成圆柱形的共振容腔;所述S型弹性薄壁的轴向上均匀开有若干锥形变结构阻尼孔,锥形变结构阻尼孔连通共振容腔;所述锥形变结构阻尼孔由锥形弹性阻尼孔管和缝孔组成;所述波纹管呈螺旋状绕在共振容腔外,和共振容腔通过多个锥形插入管连通;所述波纹管各圈之间通过若干支管连通,支管上设有开关;所述波纹管和共振容腔组成插入式螺旋异构串联H型滤波器;所述分离吸附模块由依次连接的机械离心模块、磁化模块、磁吸附模块、起电模块以及电吸附模块组成。...

【技术特征摘要】
1.用全频段变结构工况自适应滤波、和塑形的油液监控设备,其设置在液压管路上,其特征在于:包括滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块、流量传感器以及ECU;其中,所述滤波器、分离吸附模块、旋转塑形模块、检测线圈、流量传感器、消磁模块依次设置在液压管路上;所述检测线圈、参考线圈相串联;所述ECU分别电性连接并控制滤波器、分离吸附模块、旋转塑形模块、检测线圈、参考线圈、消磁模块和流量传感器;所述滤波器包括输入管、外壳、输出管、波纹管以及S型弹性薄壁;其中,所述输入管连接于外壳的一端,其和一液压油进口对接;所述输出管连接于外壳的另一端,其和U型微粒分离模块对接;所述S型弹性薄壁沿外壳的径向安装于外壳内,其内形成膨胀腔和收缩腔;所述输入管、输出管和S型弹性薄壁共同形成一S型容腔滤波器;所述S型弹性薄壁和外壳之间形成圆柱形的共振容腔;所述S型弹性薄壁的轴向上均匀开有若干锥形变结构阻尼孔,锥形变结构阻尼孔连通共振容腔;所述锥形变结构阻尼孔由锥形弹性阻尼孔管和缝孔组成;所述波纹管呈螺旋状绕在共振容腔外,和共振容腔通过多个锥形插入管连通;所述波纹管各圈之间通过若干支管连通,支管上设有开关;所述波纹管和共振容腔组成插入式螺旋异构串联H型滤波器;所述分离吸附模块由依次连接的机械离心模块、磁化模块、磁吸附模块、起电模块以及电吸附模块组成。2.如权利要求1所述的用全频段变结构工况自适应滤波、和塑形的油液监控设备,其特征在于:所述输入管和输出管的轴线不在同一轴线上;所述锥形变结构阻尼孔开口较宽处位于共振容腔内,其锥度角为10°;所述锥形变结构阻尼孔锥形弹性阻尼孔管的杨氏模量比弹性薄壁的杨氏模量要大,能随流体压力变化拉伸或压缩;缝孔的杨氏模量比锥形弹性阻尼孔管的杨氏模量要大,能随流体压力开启或关闭;所述锥形插入管开口较宽处位于波纹管内,其锥度角为10°。3.如权利要求1所述的用全频段变结构工况自适应滤波、和塑形的油液监控设备,其特征在于:所述机械离心模块采用旋流离心模块;所述旋流离心模块包括旋流管壁、第一导流片、第二导流片、步进电机以及流量传感器;其中,所述第一导流片设有3片,该3片第一导流片沿管壁内圆周隔120°均匀分布,其安放角设为18°;所述第二导流片和第一导流片结构相同,其设置在第一导流片后,并和第一导流片错开60°连接在管壁内,其安放角设为36℃;所述第一导流片的长边与管壁相连,短边沿管壁的轴线延伸;其前缘挫成钝形,后缘加工成翼形,其高度为管壁直径的0.4倍,长度为管壁直径的1.8倍;所述步进电机连接并驱动第一导流片和第二导流片,以调节安放角;所述流量传感器设置在管壁内的中央。4.如权利要求1所述的...

【专利技术属性】
技术研发人员:李伟波
申请(专利权)人:绍兴文理学院
类型:新型
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1