电化学制冷系统技术方案

技术编号:13631462 阅读:103 留言:0更新日期:2016-09-02 12:18
本发明专利技术公开了一种电化学制冷系统。该电化学制冷系统包括电化学压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4)和气液分离器(5),气液分离器(5)设置在第一节流装置(3)与第一换热器(2)的出口之间,电化学制冷系统采用水作为制冷剂,电化学压缩机(1)通过氢离子携带水分子通过进行制冷剂压缩,气液分离器(5)的氢气出口连接至电化学压缩机(1)的氢气入口。根据本发明专利技术的电化学制冷系统,可以解决现有技术中机械式压缩机运动过程中摩擦及振动产生噪音较大的问题。

【技术实现步骤摘要】

本专利技术涉及空调
,具体而言,涉及一种电化学制冷系统
技术介绍
家用空调器(包括除湿机)使用蒸汽压缩循环制冷制热,通过压缩机的机械运动压缩制冷剂,建立制冷剂的高低压差,驱动制冷剂进行循环,实现制冷、制热、除湿的功能。机械式的压缩机(如旋转式或涡旋式)的机械运动有以下缺点:1、机械部件的运动造成压缩机振动,容易造成管路疲劳老化,产生破裂造成不良。2、机械部件的摩擦及振动产生噪音,容易传入室内,影响使用。3、压缩机机械部件运动需要润滑油润滑,在运转过程中,润滑油会被制冷剂带出进入系统中,容易在换热器内生成油膜,阻碍换热,影响换热效率,影响能效。
技术实现思路
本专利技术的目的是提出一种电化学制冷系统,以解决现有技术中机械式压缩机运动过程中摩擦及振动产生噪音较大的问题。根据本专利技术的一个方面,提供了一种电化学制冷系统,包括电化学压缩机、第一换热器、第一节流装置、第二换热器和气液分离器,气液分离器设置在第一节流装置与第一换热器的出口之间,电化学制冷系统采用水作为制冷剂,电化学压缩机通过氢离子携带水分子通过进行制冷剂压缩,气液分离器的氢气出口连接至电化学压缩机的氢气入口。优选地,电化学制冷系统还包括氢气生成器,氢气生成器的氢气输出端
连接至电化学压缩机的氢气入口。优选地,电化学制冷系统还包括连接至电化学压缩机的电压调节装置,电压调节装置调节电化学压缩机两端的电压差。优选地,气液分离器的出口通过旁通管路连接至电化学压缩机的氢气入口,旁通管路上设置有第二节流装置。优选地,气液分离器固定设置于第一换热器的出口末端。优选地,气液分离器与第一换热器一体成型。优选地,第一换热器处对应设置有第一送风装置。优选地,第二换热器处对应设置有第二送风装置。优选地,电化学压缩机的高压侧压力小于或等于0.05MPa,低压侧压力小于或等于0.005MPa。本专利技术的电化学制冷系统,包括电化学压缩机、第一换热器、第一节流装置、第二换热器和气液分离器,气液分离器设置在第一节流装置与第一换热器的出口之间,电化学制冷系统采用水作为制冷剂,电化学压缩机通过氢离子携带水分子通过进行制冷剂压缩,气液分离器的氢气出口连接至电化学压缩机的氢气入口。电化学制冷系统采用电化学压缩机进行水分子的压缩,通过电力对水分子压缩进行驱动,无需机械运动,不会发生振动,可靠性高,无噪音,环保安全。该电化学制冷系统在氢离子携带极性水分子通过电化学压缩机的离子交换膜还原成氢气之后,将经过第一换热器换热流出的氢气从氢气和水的混合物中分离出来,并输送至电化学压缩机的氢气入口继续参与输送水分子的过程,能够使氢气得到更加充分的利用,减少氢气的用量,降低成本,并提高电化学压缩机的工作效率。附图说明此处所说明的附图用来提供对本专利技术的进一步理解,构成本申请的一部分,本专利技术的示意性实施例及其说明用于解释本专利技术,并不构成对本专利技术的不当限定。在附图中:图1是本专利技术实施例的的冷藏空调的结构示意图。附图标记说明:1、电化学压缩机;2、第一换热器;3、第一节流装置;4、第二换热器;5、气液分离器;6、旁通管路;7、第一送风装置;8、第二送风装置;9、第二节流装置。具体实施方式在以下详细描述中,提出大量特定细节,以便于提供对本专利技术的透彻理解。但是,本领域的技术人员会理解,即使没有这些特定细节也可实施本专利技术。在其它情况下,没有详细描述众所周知的方法、过程、组件和电路,以免影响对本专利技术的理解。结合参见图1所示,根据本专利技术的实施例,电化学制冷系统包括电化学压缩机1、第一换热器2、第一节流装置3、第二换热器4和气液分离器5,气液分离器5设置在第一节流装置3与第一换热器2的出口之间,电化学制冷系统采用水作为制冷剂,电化学压缩机1通过氢离子携带水分子通过进行制冷剂压缩,气液分离器5的氢气出口连接至电化学压缩机1的氢气入口。电化学压缩机是这样一种压缩机,它包括两个极板,两个极板之间设置有离子交换膜,离子交换膜可以允许离子通过。当在电化学压缩机两侧通电源时,H2在电源正极被电离为H+,H+与制冷剂水蒸气结合使水成为带正电荷的离子穿过离子交换膜到达另一侧,另一侧的电源负极的电子将离子还原为H2和H2O,从而将水蒸气从低压压缩到高压。高压的水蒸气与H2混合后进入冷凝器进行冷却,水蒸气被冷凝成为高压的液态水,H2因为在相同压力下的饱和温度远低于H2O,因此仍然保持气态。电化学制冷系统采用电化学压缩机1通过上述方式进行水分子的压缩,通过电力对水分子压缩进行驱动,无需机械运动,无需润滑油,不会发生振动,可靠性高,换热效率高,无噪音,环保安全。以水作为制冷剂,环保无污染,不破坏臭氧层,无碳排放,可以减少温室效应。该电化学制冷系统在氢离子携带极性水分子通过电化学压缩机的离子
交换膜还原成氢气之后,将经过第一换热器换热流出的氢气从氢气和水的混合物中分离出来,并输送至电化学压缩机的氢气入口继续参与输送水分子的过程,能够使氢气得到更加充分的利用,减少氢气的用量,降低成本,并提高电化学压缩机的工作效率。电化学制冷系统还包括氢气生成器,氢气生成器的氢气输出端连接至电化学压缩机1的氢气入口。氢气生成器可以产生电化学压缩机1工作所需的氢气,并能够在制冷量要求较大时补充系统中的氢气,以便提高氢气对水分子的运输能力,提高电化学制冷系统的制冷能力。电化学制冷系统还包括连接至电化学压缩机1的电压调节装置,电压调节装置调节电化学压缩机1两端的电压差。电化学压缩机的压缩能力与电压或电流成正向相关,电压或电流越大,压缩能力越强,系统的制冷能力越强。因此通过调节电化学压缩机1两端的电压差,可以方便地调节电化学制冷系统的制冷能力,满足用户需求。此处的第一换热器2在电化学制冷系统处于制冷状态时,为室外换热器,在电化学制冷系统处于制热状态时,为室内换热器。为了保证电化学制冷系统在制冷或者制热时均能够有效节流降压,在室外换热器与气液分离器5之间以及室内换热器与气液分离器5之间分别设置有一个第一节流装置3。气液分离器5设置在第一节流装置3与第一换热器2的出口之间还具有如下优点:1、H2在进入节流装置前被分离,此时H2为气态,H2O为液态,利用重力分离,简单易行。2、气态H2不经过第一节流装置3,避免经过第一节流装置3时的流量波动,因为节流降压装置一般采用电子膨胀阀、毛细管、节流短管的方式,均是内径非常小的孔或管,气态H2和液态水的混合物经过第一节流装置3时,因气态和液态物质的巨大差异,在相同体积流量下,经过节流装置的制冷剂制冷波动明显,影响系统稳定。3、气态H2不进入蒸发器,降低蒸发器入口制冷剂干度,提升蒸发器换热效率。4、当水蒸气在冷凝器中没有完全冷凝成液态时,部分气态水也可以通过分离器分离回到压缩机,降低蒸发器入口制冷剂干度,提升蒸发器换热效率。优选地,气液分离器5为氢气分离器。当气态的H2和H2O进入氢气分离器时,由于氢气分离器是一个密封容器,制冷剂进入后,因重力影响,气态的H2处于上部,液态的水处于下部,从而将H2和H2O分离,H2通过分支回路直接回到压缩机低压侧,液态H2O继续通过节流装置3节流降压为低压液态进入蒸发器4进行蒸发为气态,实现制冷,然后继续回到压缩机进行压缩完成循环。优选地,气液分离器5的出口通过旁通管路6连接至电化学压本文档来自技高网
...

【技术保护点】
一种电化学制冷系统,其特征在于,包括电化学压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4)和气液分离器(5),所述气液分离器(5)设置在所述第一节流装置(3)与所述第一换热器(2)的出口之间,所述电化学制冷系统采用水作为制冷剂,所述电化学压缩机(1)通过氢离子携带水分子通过进行制冷剂压缩,所述气液分离器(5)的氢气出口连接至所述电化学压缩机(1)的氢气入口。

【技术特征摘要】
1.一种电化学制冷系统,其特征在于,包括电化学压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4)和气液分离器(5),所述气液分离器(5)设置在所述第一节流装置(3)与所述第一换热器(2)的出口之间,所述电化学制冷系统采用水作为制冷剂,所述电化学压缩机(1)通过氢离子携带水分子通过进行制冷剂压缩,所述气液分离器(5)的氢气出口连接至所述电化学压缩机(1)的氢气入口。2.根据权利要求1所述的电化学制冷系统,其特征在于,所述电化学制冷系统还包括氢气生成器,所述氢气生成器的氢气输出端连接至所述电化学压缩机(1)的氢气入口。3.根据权利要求1所述的电化学制冷系统,其特征在于,所述电化学制冷系统还包括连接至所述电化学压缩机(1)的电压调节装置,所述电压调节装置调节所述电化学压缩机(1)两端的电压差。4.根据权利要求1所述...

【专利技术属性】
技术研发人员:张明杰于世鹏王若峰朱百发袁俊军丁爽罗荣邦李波
申请(专利权)人:青岛海尔空调器有限总公司
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1