一种微弱电磁信号频谱测量方法技术

技术编号:13105832 阅读:74 留言:0更新日期:2016-03-31 12:02
本发明专利技术公开了一种微弱电磁信号频谱测量方法,包括以下步骤:连接被测射频信号输出端口到超外差仪器接收通路输入端口,设置需要执行信号测量的仪器状态;执行一次扫描测量,得到一组频谱数据;对被测射频信号与超外差仪器的输入端口之间进行隔离,执行一次扫描测量,得到另一组频谱数据集合,确定其阈值;求取两组频谱数据的误差绝对值,判断误差绝对值与阈值的大小,若误差绝对值小于阈值,则射频输入信号的频谱测量结果为阈值,否则频谱测量结果为误差绝对值。本发明专利技术不通过减小输入衰减或增加低噪声放大等手段,提高微弱信号电平测量准确度。

【技术实现步骤摘要】

本专利技术涉及。
技术介绍
超外差接收或分析仪器是进行电磁信号频谱测量最常用的测试仪器。其中外差式频谱分析仪具有简单、灵活、频率范围宽、灵敏度高等优点,是目前使用最为广泛的一种超外差仪器。无线电技术的不断发展,对频谱分析仪的微弱信号测量灵敏度和动态范围指标要求越来越高。可测量的最小信号电平和动态范围是衡量频谱分析仪微弱信号测量能力的重要指标。超外差频谱分析仪的基本原理如图1所示。通常频谱分析仪测量显示的信号等于输入信号+仪器固有噪声,因此可测量的最小信号受仪器固有噪声的限制,制造厂商常用显示平均噪声电平的指标来规定仪器固有噪声大小。显示平均噪声电平=-174dBm+FdB+101og(RBffnoise/Hz)。其中FdB为整机噪声系数,RBWnciise表示仪器中频分辨率带宽滤波器的等效噪声带宽。为了提高微弱信号测量的准确度,现有技术方案包括:一是减小仪器的噪声系数FdB,即减小输入衰减器或不衰减,或在仪器内部或外部增加低噪声放大器电路,从而降低屏幕显示的噪声电平,提高微弱信号电平测量能力。现有的另外一种典型的技术手段是减小中频分辨率带宽RBW,减小RBW会减小通过中频滤波器的噪声能量,即降低屏幕显示的噪声电平。虽然这种方法仅对于测量正弦信号电平非常有效,但同时造成测量速度大幅度降低。如果希望测量的是输入信号的噪声电平,例如数字通信信号等类噪声信号的信道功率或邻道抑制比测量,减小RBW也同时将减小了输入信号通过中频滤波器的噪声能量,测量信噪比依然无法提高,也无法提高测量准确度。现有的另外一种技术手段,采用减小视频滤波器带宽VBW或采用多次平均或采用平均值检波等平滑措施,也可提高微弱信号的测量能力,但是这些手段仅仅减小的是测量结果的方差,并不能提高微弱信号电平测量的准确度,并不能降低显示平均噪声电平。现有的例如减小衰减器、增加低噪声放大器等减小仪器的噪声系数的技术手段,不仅大幅增加仪器的硬件成本,在输入信号存在大电平的频率分量时,还会造成输入信号进入仪器内部的功率过大,而损坏内部电路器件。即使输入信号功率在仪器可接受的电平范围内,通常也会造成一定的非线性失真,从而降低测量动态范围,失真分量可能还会影响小电平频率分量的信号测量。受目前工艺和制造水平的限制,仪器的噪声系数也不能减小到零,即总会存在固有噪声。当输入信号的电平与仪器固有噪声电平约接近,信号电平测量准确度越差。因此,现有的难题在于:不通过减小输入衰减或增加低噪声放大等手段,通过提前测量仪器噪声电平值,然后在执行测量时,将仪器噪声电平值删除,从而提高微弱信号电平测量准确度,进一步减小仪器固有噪声对微弱信号测量的影响,提高微弱小信号电平测量准确度。
技术实现思路
本专利技术为了解决上述问题,提出了,本方法不通过减小输入衰减或增加低噪声放大等手段,提高微弱信号电平测量准确度,并进一步减小仪器固有噪声对微弱信号测量的影响。为了实现上述目的,本专利技术采用如下技术方案:,包括以下步骤:(1)连接被测射频信号输出端口到超外差仪器接收通路输入端口,设置需要执行信号测量的仪器状态;(2)执行一次扫描测量,得到一组频谱数据;(3)对被测射频信号与超外差仪器的输入端口之间进行隔离,执行一次扫描测量,得到另一组频谱数据集合,确定其阈值;(4)求取两组频谱数据的误差绝对值,判断误差绝对值与阈值的大小,若误差绝对值小于阈值,则射频输入信号的频谱测量结果为阈值,否则频谱测量结果为误差绝对值。所述步骤(3)中,阈值的确认方法为:Z(i) =X( i )/M,M取值取决于超外差仪器的本底噪声的大小,Z(i)为阈值,X(i)为隔离后扫描测量得到的元素个数为N的一组频谱数据,i= 1,2,...,Ν0所述步骤(3)中,隔离的方法包括以下的任意一种:(1-1)断开被测射频信号与超外差仪器的输入端口的连接,然后将超外差仪器的输入端口连接匹配负载;(1-2)在超外差仪器输入衰减器衰减值精确已知的情况下,可以将超外差仪器的输入衰减量增加到最大。所述步骤(4)的具体方法为:(4-1)求出两组数据的误差绝对值,S卩5’(1)=|乂(1)_¥(1)|;其中,¥(1)为隔离前扫描测量得到的元素个数为N的一组频谱数据,i = 1,2,…,N;(4-2)如果 S’(i)〈阈值 Z(i),则令 S(i)=Z(i);否则 S(i)=S’(i);(4-3)将S(i)作为最终针对射频输入信号的频谱测量结果。所述步骤(2)中,频谱数据为频率功率数值。所述步骤(3)中,频谱数据为频率功率数值。本专利技术的有益效果为:(1)不通过减小输入衰减或增加低噪声放大等手段,提高微弱信号电平测量准确度,成本低;(2)在通过减小衰减或增加低噪声放大提高微弱信号测量能力的基础上,使用本方法仍然可以进一步减小仪器固有噪声对微弱信号测量的影响,提高微弱小信号电平测量准确度;(3)解决了通过减小频谱分析仪的中频分辨率带宽(RBW),提高正弦信号电平测量准确度的方法时,无法解决的噪声信号电平测量的准确度问题;(4)在通过减小视频滤波器带宽VBW或采用多次平均或采用平均值检波等平滑措施的基础上,使用本方法仍然可以进一步提高微弱信号电平测量准确度;(5)本专利技术与上述现有技术手段并不对立,在采用上述技术手段的同时,依然可以采用本专利技术提出的方法进一步提高微弱信号电平测量准确度。【附图说明】图1为本专利技术的超外差频谱分析仪的原理示意图;图2为本专利技术的流程示意图。【具体实施方式】:下面结合附图与实施例对本专利技术作进一步说明。本专利技术提出的微弱信号(被测射频信号)频谱测量方法如图2所示的操作步骤:步骤1:正确连接被测射频信号输出端口到超外差仪器接收通路输入端口;步骤2:设置需要执行信号测量的仪器状态;步骤3:执行一次扫描测量,得到元素个数为N的一组频谱数据Y( i),i = 1,2,…,Ν;步骤4:对被测射频信号与超外差仪器的输入端口之间进行隔离。步骤5:执行一次扫描测量,得到元素个数为N的另一组频谱数据X(i),i= l,2,…,N;步骤6:对两次频谱数据X( i)和Y( i)执行数学运算,得到S( i);步骤7:将S( i)作为最终针对射频输入信号的频谱测量结果;其中,步骤3中的一组频谱数据X(i),X(i)为一组频率功率数值,单位为W。其中,步骤5中的另一组频谱数据Y(i),Y(i)为另一组频率功率数值,单位为W。步骤6中对两次频谱数据X(i)和Y(i)执行数学运算的规则是:第1步:根据乂(1)求出一组阈值2(1),2(1)=乂(1)肩,1取值取决于超外差仪器的本底噪声的大小,通常取值为10?1000之间的任意常数。第2步:求出X(i)_Y(i)的绝对值,S’(i)=|X(i)_Y(i) I ;第3步:如果5’(1)〈2(1),则5(1)=2(1);否则5(1)=5’(1)。步骤4中的隔离方法可以是下面两个方法之中的任意一种,或其他有效的隔离方法。隔离度越大越好。方法1:断开被测射频信号与超外差仪器的输入端口的连接,然后将超外差仪器的输入端口连接匹配负载。方法2:在超外差仪器输入衰减器衰减值精确已知的情况下,可以将超外差仪器的输入衰减量增加到最大。上述虽然结合附图对本专利技术的【具体实施方式】进行了描述,但并非对本专利技术保护范围的限制,所属领域技本文档来自技高网
...

【技术保护点】
一种微弱电磁信号频谱测量方法,其特征是:包括以下步骤:(1)连接被测射频信号输出端口到超外差仪器接收通路输入端口,设置需要执行信号测量的仪器状态;(2)执行一次扫描测量,得到一组频谱数据;(3)对被测射频信号与超外差仪器的输入端口之间进行隔离,执行一次扫描测量,得到另一组频谱数据集合,确定其阈值;(4)求取两组频谱数据的误差绝对值,判断误差绝对值与阈值的大小,若误差绝对值小于阈值,则射频输入信号的频谱测量结果为阈值,否则频谱测量结果为误差绝对值。

【技术特征摘要】

【专利技术属性】
技术研发人员:张超许建华杜会文王峰赵永志
申请(专利权)人:中国电子科技集团公司第四十一研究所
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1