一种长时间耐高温夹层结构透波罩制造技术

技术编号:12569364 阅读:202 留言:0更新日期:2015-12-23 11:57
本发明专利技术公开了一种长时间耐高温夹层结构透波罩,采用三层夹层透波罩结构,利用外层结构防热与抗烧蚀,中间层隔热,内层支撑与承载,较好的解决了以往单层及双层结构透波罩在长时间加热条件下面临的防隔热、高温承载及透波设计难题,满足了整体高温状态下的使用要求,采用了两种新型低成本透波材料,降低了产品的成本,所采用的结构形式降低了透波罩的质量与厚度,防潮处理方式有效避免了因高温带来的碳化问题,从结构设计角度解决了高温防潮难题。

【技术实现步骤摘要】
一种长时间耐高温夹层结构透波罩
本专利技术涉及一种透波罩,尤其涉及一种长时间耐高温夹层结构透波罩,属于天线罩/透波罩设计

技术介绍
透波罩须具备一定的防热、承载和透波等功能,以保证内部的电子元器件能够正常工作。飞机、船舶及地面设备上使用的透波罩在设计时主要考虑其电气性能,对结构强度的要求不高,基本不涉及到防隔热的要求,此类透波罩一般采用泡沫和树脂材料,具有一定的结构强度,能够满足300℃以下的温度使用要求。对于使用温度更高的透波罩,目前主要选用陶瓷基各类复合材料,该类材料在长时间高温使用条件下会软化,强度明显降低。传统的单层结构形式,在受到短时间剧烈加热的情况下,虽然总加热量很大,但加热时间短,热量没有足够长的时间向内部传递,透波罩结构仅在外表面较薄的厚度区域内出现高温软化层,结构内部区域绝大部分仍处于较低的温度,若采用陶瓷基各类复合材料,仍具有足够的力学承载性能。当透波罩外部持续受到加热时,外表面的热量有足够的时间向结构内部传递,导致内部的温度较高。此外透波罩还承受了较大的力学载荷,为了保证结构的完整性,其内部须保留一定的低温承载厚度。如图1所示,透波罩若仍采用单层结构,就需要较大程度的增加透波罩的壁面厚度,较厚的结构会增加材料单位的研制与生产难度,且极大压缩了内部元器件的安装空间,并导致质量的显著增加,无法满足使用要求。为了满足长时间加热条件下防隔热、高温承载、透波及轻质化的要求,透波罩就必须采用多层结构方案。国内外的文献关于飞机、船舶以及地面设备上透波罩的研制介绍较多,基本不涉及到高温使用环境。国内外关于适应长时间高温环境的透波罩研究资料非常少,如图2所示,公开报道过的双层结构透波罩仅用于短时间的防隔热使用要求,没有长时间耐高温的问题。
技术实现思路
本专利技术的技术解决问题是:克服现有技术的不足,提供一种长时间耐高温夹层结构透波罩,采用三层夹层透波罩结构,利用外层结构防热与抗烧蚀,中间层隔热,内层支撑与承载,解决了高温防潮等问题。本专利技术的技术解决方案是:一种长时间耐高温夹层结构透波罩,采用透波罩外罩、隔热层和透波罩内罩三层夹层结构,隔热层封闭在透波罩内罩和透波罩外罩中间,透波罩内罩和透波罩外罩的后端交界面处采用铆接、胶粘或销钉的方式进行装配连接,装配连接后的夹层结构透波罩采用防潮涂层或防潮薄膜进行整体防潮,所述透波罩外罩作为防热与抗烧蚀层,采用石英陶瓷、氮化物陶瓷或纤维增强透波材料制成;隔热层采用石英陶瓷瓦或纳米气凝胶隔热透波材料制成,透波罩内罩采用树脂基纤维增强材料制成。透波罩外罩和透波罩内罩采用等厚度设计,具体厚度根据电磁波平均入射角采用法布里-帕罗公式进行计算,透波罩外罩的厚度为10~16mm,透波罩内罩的厚度为5~11mm。透波罩外罩和透波罩内罩的厚度采用变厚度设计。所述透波罩外罩顶部的厚度为30~40mm,末端的厚度为24~30mm,中间的厚度为10-16mm;透波罩内罩顶部的厚度为10~20mm,末端的厚度为14~20mm,中间的厚度为5-11mm。中间隔热层的厚度为8~13mm,中间隔热层的顶部留有直径1~2mm的排气孔,中间隔热层的锥身内壁面沿母线方向留有2~6条深1~3mm、宽3~10mm的排气槽。本专利技术与现有技术相比具有如下有益效果:本专利技术采用三层夹层透波罩结构,利用外层结构防热与抗烧蚀,中间层隔热,内层支撑与承载,较好的解决了以往单层及双层结构透波罩在长时间加热条件下面临的防隔热、高温承载及透波设计难题,满足了整体高温状态下的使用要求,采用了两种新型低成本透波材料,降低了产品的成本,所采用的结构形式降低了透波罩的质量与厚度,防潮处理方式有效避免了因高温带来的碳化问题,从结构设计角度解决了高温防潮难题。附图说明图1为单层透波罩结构图;图2为双层透波罩结构图;图3为夹层结构透波罩结构图;图4为外罩变厚度结构图;图5为内罩变厚度结构图;图6隔热层顶区域部排气孔结构图;图7隔热层锥身区域内壁面排气槽结构图。具体实施方式下面结合附图和具体实施例对本专利技术做进一步详细的说明:目前现有的多层夹层式透波罩主要是用于拓宽透波频带,某些层的结构厚度不到1mm,力学强度较低,无法满足较大力学载荷条件下的使用要求。国内外同类技术中比较有代表性的是双层透波罩,双层结构利用外层防热与承载,内层隔热,主要用于降低位于其内部的电子元器件温度。由于双层结构仍采用外层结构件承载,同样面临与单层结构类似的高温力学强度下降的问题。此外,由于双层结构外罩的内壁面温度较高,外罩内壁面上的防潮涂层会发生碳化现象,导致电磁波穿过透波罩时产生较大的能量衰减,使得透波罩的电气性能显著降低。受限于外罩整体温度不能太高的制约因素,双层隔热结构透波罩仅适用于力学载荷相对较小,加热时间较短的环境条件。本项目专利技术采用三层夹层透波罩结构,利用内罩承载。如图3所示,透波罩外层采用透波性能好,热物理和力学性能稳定的透波材料作为防热与抗烧蚀层;中间层采用低密度、低导热系数、低介电常数的透波材料作为隔热层;内层采用力学性能较高的透波材料作为支撑与承载层。在满足透波罩承载性能和防隔热要求的前提下,合理分配各介质层的厚度,达到所要求的透波罩电性能指标。透波罩外罩和透波罩内罩采用等厚度设计,具体厚度根据电磁波平均入射角采用法布里-帕罗公式进行计算,透波罩外罩的厚度为10~16mm,透波罩内罩的厚度为5~11mm。如图4-5所述,本专利技术的透波罩外罩和透波罩内罩的厚度也可采用变厚度设计,图4中,透波罩外罩顶部的厚度为30~40mm,末端的厚度为24~30mm,中间的厚度为10-16mm;透波罩内罩顶部的厚度为10~20mm,末端的厚度为14~20mm,中间的厚度为5-11mm。中间隔热层的厚度需保证内罩的内壁面温度不高于设计要求值中间隔热层的厚度为8~13mm。透波罩外罩采用耐高温,防隔热性能较好的透波材料,如石英陶瓷、氮化物陶瓷及各种纤维增强材料。中间隔热层采用热导率很低的低密度隔热透波材料,如石英陶瓷瓦和纳米气凝胶等材料。内罩采用力学强度较高的透波材料,如各类树脂基及纤维增强类材料。内、外罩的后端交界面处可以采用铆接、胶粘或销钉的方式进行连接装配,装配完成之后,采用防潮涂层或防潮薄膜进行整体防潮。在三层结构套装时,为了解决各层结构顶部残留空气无法从顶部狭小的空间排除,导致结构沿轴向无法装配到位的问题,在隔热层的顶部和锥身分别留有排气孔和排气槽,中间隔热层的顶部留有直径1~2mm的排气孔,中间隔热层的锥身内壁面沿母线方向留有2~6条深1~3mm、宽3~10mm的排气槽,使得装配过程中的顶部空气能够排除。在夹层结构套装完成后,在内、外罩的后端交界面处可以采用螺接、胶粘或销钉的方式进行连接装配。透波罩利用后端连接区以外的三层结构区域透波,通过各层合理的厚度设计保证电磁波以较小的能量衰减穿过透波罩。透波罩三层结构装配完成之后,采用防潮涂层或防潮薄膜进行整体防潮,由于各层配合面间无防潮涂层或防潮膜,不存在碳化问题。此外,透波罩内罩的内壁温度也低于防潮涂层或防潮膜的碳化温度,有效解决了高温碳化问题。本专利技术未详细描述内容为本领域技术人员公知技术。本文档来自技高网
...
一种长时间耐高温夹层结构透波罩

【技术保护点】
一种长时间耐高温夹层结构透波罩,其特征在于:采用透波罩外罩、隔热层和透波罩内罩三层夹层结构,隔热层封闭在透波罩内罩和透波罩外罩中间,透波罩内罩和透波罩外罩的后端交界面处采用铆接、胶粘或销钉的方式进行装配连接,装配连接后的夹层结构透波罩采用防潮涂层或防潮薄膜进行整体防潮,所述透波罩外罩作为防热与抗烧蚀层,采用石英陶瓷、氮化物陶瓷或纤维增强透波材料制成;隔热层采用石英陶瓷瓦或纳米气凝胶隔热透波材料制成,透波罩内罩采用树脂基纤维增强材料制成。

【技术特征摘要】
1.一种长时间耐高温夹层结构透波罩,其特征在于:采用透波罩外罩、隔热层和透波罩内罩三层夹层结构,隔热层封闭在透波罩内罩和透波罩外罩中间,透波罩内罩和透波罩外罩的后端交界面处采用铆接、胶粘或销钉的方式进行装配连接,装配连接后的夹层结构透波罩采用防潮涂层或防潮薄膜进行整体防潮,所述透波罩外罩作为防热与抗烧蚀层,采用石英陶瓷、氮化物陶瓷或纤维增强透波材料制成;隔热层采用石英陶瓷瓦或纳米气凝胶隔热透波材料制成,透波罩内罩采用树脂基纤维增强材料制成,所述透波罩外罩和透波罩内罩的厚度采用变厚度设计,所述透波罩外罩顶部的厚度为30...

【专利技术属性】
技术研发人员:李翔张利嵩徐银芳那伟张杨蒋凌澜王菲徐莹刘娜
申请(专利权)人:北京航天长征飞行器研究所中国运载火箭技术研究院
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1