一种超宽波段图谱关联探测装置制造方法及图纸

技术编号:11683289 阅读:100 留言:0更新日期:2015-07-06 15:16
本实用新型专利技术公开了一种超宽波段图谱关联探测装置,包括扫描转镜、卡氏反射镜组、分光镜、反射镜、宽光谱透镜组、可见及近红外透镜组、长波成像透镜组、电荷耦合元件成像单元、焦平面阵列成像单元、傅里叶测谱单元和光栅测谱单元。本实用新型专利技术利用长波红外成像及可见近红外成像初步识别目标并引导测谱,利用测谱完成目标精确识别,解决现有探测装置探测波段不全,光路布局受限,设备体积大,探测动目标和动态变化对象能力差的难题。本实用新型专利技术体积较小、集成度高、使用方便灵活,对动目标和外部景物的动态变化可以实现超宽波段的图谱观测,还能实现对各种目标自动切换跟踪与辨识可广泛应用于国民经济及国家安全领域。

【技术实现步骤摘要】

本技术属于遥感探测和图像识别交叉领域,具体涉及一种超宽波段图谱关联探测装置
技术介绍
物体的特性可由其光谱来表征,光谱包括散射环境照射的谱和自身辐射的谱,其谱特征可以区分不同的物体或物质,再加上物体的空间二维图像,使遥感识别物体的能力更加强大。同时收集图像和光谱的设备多为多光谱或高光谱扫描仪,如国内外研制的机载、星载多光谱及高光谱扫描仪,安装在飞行器上,其扫描镜旋转可使接收的瞬时视场作垂直于飞行方向的运动,实现较宽幅的对地覆盖。该设备形成原始数据处理速度慢;通常要传回地面处理,只适用于静止场景的非实时探测,对于运动目标和动态现象难以适用。
技术实现思路
为了解决上述技术问题,本技术提供一种超宽波段图谱关联探测装置与方法,解决现有图谱合一系统不能同时复合包括可见、近红外、短波红外、中波红外和长波红外全波段的光谱测量和可见近红外与长波红外融合测量难题。为了实现上述目的,本技术提供了一种超宽图谱探测方法图谱探测装置,包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、电荷親合元件(Charge-coupled Device,CO))成像单元、焦平面阵列(focalplane array, FPA)成像单元、傅里叶测谱单元和光栅测谱单元;其中:所述扫描转镜通过伺服电机控制转动调整方位对准目标区域,用于将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后反射至第一分光镜,第一分光镜将2-14um红外光透射至第一宽光谱透镜组,并将0.4-2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波红外成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;第二宽光谱透镜组用于将分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱米集;反射镜将第一分光镜反射的0.4_2um光线反射至第三宽光谱透镜组;第三分光镜用于将预订成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像;第四宽光谱透镜组用于将第三分光镜反射出的光聚焦到光栅型测谱单元以实现光谱采集。进一步地,所述预定成像波段为可见、近红外及长波红外的超宽波段。在本技术的一个实施例中,所述扫描转镜包括平面反射镜、二维转台和伺服电机,其中所述平面反射镜放置在二维转台上,并通过转台上的卡槽固定;伺服电机的两个驱动轴分别与二维转台俯仰轴以及旋转轴机械连接;二维转台在伺服电机的驱动下可以带动平面反射镜实现旋转和俯仰两个维度的运动。进一步地,所述平面反射镜采用K9玻璃,镀金反射层后对可见、近红外光、短、中、长波红外都有较尚的反射率。在本技术的一个实施例中,所述卡氏反射镜组采用卡塞格林系统,由一个抛物面反射镜和一个双曲面反射镜组成,实现对目标可见、近红外及长波红外谱成像和能量收集。进一步地,所述抛物面反射镜与双曲面反射镜遮挡比不大于3:1。在本技术的一个实施例中,所述第一分光镜、第二分光镜、第三分光镜分别镀双层增透膜,第一分光镜对可见、近红外光全反射,对长波红外光全透射;第二分光镜将50%长波红外光透射至长波成像透镜组实现长波红外成像质量的补偿校正,剩余光线反射至第二宽光谱透镜组;第三分光镜将50%可见及近红外光透射至可见及近红外透镜组实现可见、近红外成像质量补偿校正,剩余光线反射至第四宽光谱透镜组。在本技术的一个实施例中,所述第一宽光谱透镜组、第二宽光谱透镜组用于实现对长波红外镜头宽光谱能量会聚光斑质量的补偿校正,第二宽光谱透镜组满足短、中、长波红外光纤耦合输出要求;第三宽光谱透镜组、第四宽光谱透镜组用于实现对可见及近红外宽光谱能量会聚光斑质量的补偿校正,第四宽光谱透镜组满足可见、近红外光纤耦合输出要求。在本技术的一个实施例中,所述第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组采用光学无热设计技术,使环境温度在-40°C?+60°C内变化时,成像面位置保持稳定不变,免除调焦结构。进一步地,所述装置还包括融合信号处理与控制单元,所述融合信号处理与控制单元,用于对所述CCD成像单元、FPA成像单元、傅里叶测谱单元以及光栅测谱单元输出的信号进行融合处理。本技术不仅具有多光谱扫描仪和成像光谱仪的图谱一体化的特点,而且能对场景中的多个动目标和动态现象进行自动检测、跟踪、测谱与识别。本技术采用红外成像和红外测谱共光路及可见近红外成像和可见近红外测谱共光路的设计,对动目标和外部景物的动态变化可以实现超宽波段的图谱观测,同时还具有响应时间短,识别效率高的特点。本技术采用可见近红外成像及长波红外成像的图谱一体探测设备对感兴趣目标进行检测识别,得到动目标和动态变化对象的超宽光谱信息和图像信息,从而实现对动目标和外部景物的动态变化可的实现超宽波段的图谱观测。本技术体积较小、集成度高、使用方便灵活,可广泛应用于国民经济及国家安全领域。【附图说明】图1为本技术超宽波段图谱关联探测装置结构示意图;图2为本技术实施例中超宽波段图谱关联探测系统架构;图3为本技术超宽波段图谱关联探测装置中扫描转镜结构示意图。【具体实施方式】为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。此外,下面所描述的本技术各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。如图1和图2所示,本技术提供了一种超宽图谱探测方法图谱探测装置,同时集成了成像和测谱功能,所述装置包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、CXD成像单元、FPA成像单元、傅里叶测谱单元和光栅测谱单元;扫描转镜通过伺服电机控制转动调整方位对准目标区域,将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后反射至第一分光镜,第一分光镜将2-14um红外光透射至第一宽光谱透镜组,并将0.4-2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波红外成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;第二宽光谱透镜组用于将分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱采集;反射镜将第一分光镜反射的0.4-2um光线反射至第三宽光谱透镜组;第三分光镜用于将预定成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像本文档来自技高网...

【技术保护点】
一种超宽波段图谱关联探测装置,其特征在于,所述探测装置包括扫描转镜、卡氏反射镜组、第一分光镜、反射镜、第一宽光谱透镜组、第二宽光谱透镜组、第三宽光谱透镜组、第四宽光谱透镜组、第二分光镜、第三分光镜、可见及近红外透镜组、长波成像透镜组、CCD成像单元、FPA成像单元、傅里叶测谱单元和光栅测谱单元;其中:所述扫描转镜通过伺服电机控制转动调整方位对准目标区域,用于将目标区域反射的光反射至卡氏反射镜组;卡氏反射镜组用于将反射的光收集后反射射至第一分光镜,第一分光镜将2‑14um红外光透射至第一宽光谱透镜组,并将0.4‑2um红外光线反射至反射镜;第二分光镜分光镜用于将预定成像波段的光部分透射至长波红外成像透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第二宽光谱透镜组;长波红外成像透镜组用于将分光镜透射出的光聚焦到FPA成像单元以实现成像;第二宽光谱透镜组用于将分光镜反射出的光聚焦到傅里叶测谱单元以实现光谱采集;反射镜将第一分光镜反射的0.4‑2um光线反射至第三宽光谱透镜组;第三分光镜用于将预定成像波段的光部分透射至可见及近红外透镜组,同时将预定成像波段的光剩余部分以及其它波段光反射至第四宽光谱透镜组;可见及近红外成像透镜组用于将第三分光镜透射出的光聚焦到CCD成像单元以实现成像;第四宽光谱透镜组用于将第三分光镜反射出的光聚焦到光栅型测谱单元以实现光谱采集。...

【技术特征摘要】

【专利技术属性】
技术研发人员:张天序张宏费锦东
申请(专利权)人:华中科技大学
类型:新型
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1